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Abstract. Automated optimization of SQL queries hinges on knowing
when a rewritten query remains semantically equivalent to the original.
Yet many formal verification tools, while rigorous, cannot handle features
common in modern SQL (e.g., window functions), leaving large portions
of real workloads outside their scope. This paper presents DBDoctor,
an computer-aided verification system that uses Large Language Models
(LLMs) to rewrite unsupported SQL into verifier-friendly forms and then
delegates refutation to a state-of-the-art SMT-based SQL equivalence
checker. The verifier’s counterexamples are validated against the original
queries, creating a self-correcting loop. We show that our LLM aided
approach extends verifier coverage to previously unsupported queries,
discovers new counterexamples missed under practical time budgets, and
remains consistent with the SMT-based verifier where it already succeeds.
For database systems, this capability enables safer query optimization,
regression testing of query rewrites, and guardrails for automated tuning
– impacting reliability and cost at scale – while also exemplifying how
LLMs can be combined with formal reasoning.
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1 Introduction

Our computer aided verification system, called DBDoctor (Fig 1), uses an LLM
to rewrite SQL queries containing constructs unsupported by formal SMT verifiers
into semantically aligned, verifier-compatible forms, and then delegates the
refutation step to SMT verification (e.g., VeriEQL [5]) to produce counterexamples.
Crucially, any counterexample found on the rewritten pair is validated against the
original queries, forming a self-correcting loop that accepts only counterexamples
that show non-equivalence of the original SQL (Fig 2). This design brings several
benefits: (i) it broadens the effective domain of formal SQL checkers without
changing their core SMT engines, (ii) it preserves rigor by employing SMT
reasoning, and (iii) it yields actionable artifacts (counterexample databases) that
are useful for debugging query rewrites.
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Fig. 1. DBDoctor’s workflow is an iterative cycle where the system generates SQL
query verification requests and database commands. This continuous feedback loop
enables data-driven behavior based on empirical evidence from database tests and SQL
verifier results. Our implementation employs a mix of OpenAI’s tool-calling gpt-4.1-
mini and o4-mini ‘thinking’ models [11].

1.1 Related Work

The intersection of LLMs and databases is a rapidly growing field, especially for
text-to-SQL generation and automated optimization [8, 17, 14, 13]. A common
theme in optimization is ensuring that a rewritten query is equivalent to the
original. Some approaches involve having LLMs select from a predefined set
of trusted rewrite rules [9] or use a formal verifier to check LLM-generated
optimizations [4]. However, these strategies are limited; a fixed set of rules
constrains novelty and may contain bugs, while existing verifiers support only a
limited subset of SQL, leaving most complex, real-world queries unverified [5].
The task of verifying SQL equivalence is a well-known, undecidable problem in
computer science.

Research has produced two main classes of tools:

1. Bounded verification tools like Cosette [2], Qex [15], and VeriEQL [5] support a
subset of SQL and aim to prove or disprove equivalence for database instances
up to a certain size, producing a concrete counterexample if non-equivalence
is found.

2. Unbounded verification tools like SPES [19] and HoTTSQL [3] attempt to
prove equivalence for all possible database instances but are typically re-
stricted to an even smaller subset of SQL.
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Fig. 2. The core workflow of DBDoctor combines heuristic SQL rewriting by an LLM
with formal analysis by an SMT based SQL equivalence verifier. In this example, two
queries (Q1, Q2) with unsupported window functions are rewritten into equivalent forms
(Q′

1, Q
′
2) that use only verifiable SQL constructs. The SQL verifier can then process

the rewritten pair to find a counterexample, proving non-equivalence. A crucial final
step is to validate this counterexample against the original queries (Q1, Q2). If the
counterexample is invalid for the original pair, the LLM is prompted to generate a new
rewrite, creating a self-correcting loop.

This leaves a significant gap between what can be formally verified and the
types of queries used in practice. Recent studies have investigated using LLMs
directly for SQL equivalence checking, with prompting techniques like Miniature
& Mull [18] and providing execution plans as context [12]. While these approaches
show LLMs can offer valuable heuristic insights, they also suffer from factual
hallucination and instability. Crucially, prior work has not explored an workflow
where an LLM can actively use tools or run experiments to validate its hypotheses.
Our work builds on these insights by creating a symbiotic system where LLM
intuition is disciplined by the rigor of formal methods and grounded by empirical
feedback from a live database.

1.2 Contributions

This paper’s contributions, evaluated on realistic SQL query pairs, are:

– A verification-first agentic framework. We design DBDoctor, which
integrates LLM-guided rewriting with a formal SQL verifier and empirical
validation, using the verifier as a source of counterexamples.

– Coverage extension via rewrite-to-verify. We introduce a method that
rewrites complex, unsupported SQL into SMT verifier-compatible forms
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without requiring changes to the verifier, thereby expanding its effective
coverage.

– Counterexample-driven soundness checks. We show that verifier-produced
counterexamples on rewritten queries can be validated against the original
pair, filtering spurious rewrites and yielding actionable counterexamples of
non-equivalence.

– Practical impact for database tooling. Our evaluation demonstrates
extended coverage on previously unsupported SQL query pairs, discovery of
additional counterexamples, and agreement with the SMT verifier where it
already succeeds – supporting safer optimizer rule deployment, automated
tuning guardrails, and regression testing in practice.

2 Methodology

We formalize the problem as follows. Given two SQL queries Q1 and Q2 (often
an “optimized” candidate vs. a reference), determine whether Q1 ≡ Q2 under
relational semantics. Let V be a SQL verifier (e.g., VeriEQL [5]) that accepts only
a subset of SQL. Let S denote that supported SQL subset and let R be a rewriting
procedure driven by an LLM that attempts to map (Q1, Q2) to (Q′

1, Q
′
2) ∈ S ×S

while preserving the intended semantics of both queries in lockstep. Concretely,
the LLM is instructed that any structural change introduced to make one side
verifiable must be symmetrically applied to the other side to maintain a plausible
equivalence relation.
Refutation-by-rewrite loop (Fig 2)

1. Rewrite. Use the LLM to propose (Q′
1, Q

′
2) with only constructs in S,

conserving schema and inputs.
2. Verify. Submit (Q′

1, Q
′
2) to V. If V produces a bounded counterexample

instance I witnessing Q′
1(I) ̸= Q′

2(I), proceed; otherwise, adapt the LLM
prompt and attempt a new rewrite or return non-refuted.

3. Validate on originals. Execute Q1 and Q2 on the same I. If Q1(I) ̸=
Q2(I), return refuted with counterexample I; else, reject the spurious
counterexample and continue the loop.

Soundness for refutation (w.r.t. concrete execution) The system reports
refuted only when it has validated a counterexample I such that Q1(I) ̸= Q2(I)
on the original queries. Hence, any reported counterexample is a true behavioral
discrepancy under standard SQL execution. Completeness is not claimed: if no
rewrite lands in S or the verifier times out, the system may return non-refuted
even when the queries differ.
Design choices (i) Verifier-centric correctness: the LLM proposes hypotheses;
V and the database executor arbitrate correctness. (ii) Minimal engineering to
extend coverage: we leverage existing engines (e.g., VeriEQL’s SMT procedures)
without modifying them, expanding their effective coverage via rewrite-to-verify.
(iii) Actionable artifacts: validated counterexamples are concrete databases, useful
for optimizer debugging, rule regression tests, and CI pipelines in practice.
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Fig. 3. Performance of DBDoctor vs. VeriEQL, with per-pair detail. Top
Middle: Running VeriEQL on the full LeetCode set (n=23,994) yields 22.9% unsupported,
62.1% non-refuted, and 15.0% refuted query pairs. These three buckets define our
evaluation subsets. Bottom (2x3 panels): For each bucket (Subset 1: unsupported;
Subset 2: non-refuted; Subset 3: refuted), we sample 100 query pairs and run four
methods (Methods 1–4). In each panel, the upper bar chart summarizes outcomes
for the 100 pairs, while the heatmap directly below shows the same results at per-
pair resolution: each column is a method, each row is a query pair, and colors match
the legend (red = unsupported, yellow = non-refuted, green = refuted). The bar
heights are the marginal proportions of colored cells in the heatmap beneath them—i.e.,
the bar chart is an aggregate view of the per-pair matrix. These results show that
DBDoctor expands verifier coverage on previously unsupported pairs (Subset 1),
discovers additional counterexamples in non-refuted pairs (Subset 2), and remains
consistent with the verifier on refuted pairs (Subset 3).
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2.1 Methods Compared

To isolate component contributions we compare:

– Method 1 (LLM Only): search for counterexamples without tools.
– Method 2 (LLM + Database): executes candidates against a DB to guide

counterexample search.
– Method 3 (LLM + SQL Verifier): rewrite-to-verify loop using V.
– Method 4 (LLM + DB + Verifier): full system with verifier and database

validation.

2.2 Benchmark Dataset

We evaluate against VeriEQL [5] using the LeetCode corpus (23,994 pairs) curated
in [5], where each candidate is paired with a known-correct reference. Queries
are complex and representative of practical patterns; we repair minor scraping
errors and adapt to PostgreSQL when necessary.

2.3 Evaluation Protocol

We first run VeriEQL for up to 10 minutes per pair, reproducing [5], and partition
into Unsupported, Non-refuted, and Refuted. From each bucket we sample
n = 100 pairs (margin of error ≈ ±10% at 95% confidence) and apply Methods 1–4.
We study: (i) Coverage (% pairs not unsupported); (ii) Refutation rate; and
(iii) Agreement with VeriEQL on the Refuted bucket. All reported refutations
include validated concrete counterexamples.

3 Results

Our experimental results are presented in Figure 3. The experiments test four
methods across three distinct subsets of query pairs, with each method tested on
the same sample of 100 pairs per subset.

Subset 1: Unsupported This tests coverage extension – the central goal. Method 4
reduces unsupported from 100% to 1% and refutes 47% of pairs, demonstrating
that rewrite-to-verify plus DB validation converts many previously out-of-scope
instances into actionable refutations. Method 2 also performs strongly (47%
refuted, 4% unsupported), indicating that empirical execution substantially helps
the LLM search; Method 3 sometimes fails to produce verifier-acceptable rewrites
(9% unsupported), underscoring the benefit of database feedback.

Subset 2: Non-refuted Here we test whether the system can uncover counterex-
amples that time-bounded VeriEQL missed. Method 1 refutes 15% of pairs, while
Methods 2–4 each achieve 13% refutation under the same budget, showing that
LLM assistance can expose subtle inequivalences even when a SOTA verifier
times out or yields non-refuted. Because every reported counterexample is
validated on the originals, these are genuine defects.
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Subset 3: Refuted Methods 3 and 4 (those invoking V) achieve 100% agreement –
every VeriEQL refutation is reproduced. Methods without the verifier are weaker:
Method 2 refutes 83%, Method 1 refutes 81%, highlighting the value of formal
reasoning when the problem lies squarely within the verifier’s native coverage.

4 Discussion

Application domain and impact Database engines and data platforms increasingly
apply automated rewrites – cost-based rules, ML-guided tuning, and human-
authored transformations – to control latency and resource cost. A single wrong
rewrite can silently corrupt analytics, violate compliance filters, or miscom-
pute business metrics. By furnishing validated counterexamples for inequivalent
rewrites, DBDoctor provides (i) a guardrail for auto-tuners and LLM assistants,
(ii) a regression oracle for optimizer rules, and (iii) a forensic tool for triaging
customer-reported inconsistencies. For operators, this translates to lower incident
rates and reduced compute spend via safe optimization; for researchers, it demon-
strates how LLMs can be used to extend the practical coverage of SMT-based
SQL verification.

Why the loop works LLM-driven rewrites need not be perfect; they must only land
inside the verifier’s coverage while preserving the relative transformation across
both queries. The verifier excels at refutation; when it produces a counterexample,
we confirm it on the originals, filtering out artifacts of imperfect LLM rewrites.
This division of labor leverages complementary strengths: LLMs to reach S, SMT
verification for reasoning, and database execution for final judgment.

Limitations Completeness is bounded by (i) the SMT verifier’s scope and time-
outs, (ii) the LLM’s ability to find a semantics-preserving pair in S, and (iii)
nondeterminism and list semantics (Section 5), where simple set-based equality
can be misleading. Nevertheless, the refutation results are sound due to database
validation.

5 Future Work

List Semantics Current result comparison uses set semantics; outermost ORDER
BY requires list semantics to avoid false equivalence (Listings 1.1–1.3). Extending
validation with stable-order checks – and teaching R to preserve or align order
constraints – would strengthen guarantees.

Listing 1.1. Q1: A query with a guaranteed ordering.

1 SELECT id , name , salary
2 FROM employees
3 WHERE department = ’Engineering ’
4 ORDER BY salary DESC;
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Listing 1.2. Q2: A query with no guaranteed ordering.

1 SELECT * FROM (
2 SELECT id , name , salary
3 FROM employees
4 WHERE department = ’Engineering ’
5 ) AS engineering_employees;

Listing 1.3. Q3: A query where ordering is not guaranteed to be preserved.

1 SELECT * FROM (
2 SELECT id , name , salary
3 FROM employees
4 WHERE department = ’Engineering ’
5 ORDER BY salary DESC
6 ) AS engineering_employees;

Handling Non-Deterministic Queries We plan to model common nondeterminism
sources (unordered LIMIT, ties in ORDER BY, non-deterministic functions, floating-
point aggregation; Listings 1.4–1.5) so that counterexamples must be robust
across admissible executions, not just a single run.

Listing 1.4. An unordered query with a ‘LIMIT’ clause is non-deterministic.

1 WITH Employees (EmployeeID , Name , Department) AS (
2 SELECT 1, ’Alice’, ’Engineering ’
3 UNION ALL
4 SELECT 2, ’Bob’, ’Engineering ’
5 )
6 SELECT EmployeeID , Name , Department
7 FROM Employees
8 LIMIT 1;

Listing 1.5. Floating-point arithmetic can be non-deterministic.

1 WITH number_set (id , val) AS (
2 VALUES
3 (1, 1e18:: double precision),
4 (2, -1e18:: double precision),
5 (3, 1.0:: double precision)
6 )
7 SELECT
8 -- result_a is 1.0 since the large numbers cancel
9 SUM(val ORDER BY id ASC) AS result_a ,

10 -- result_b is 0.0, since the small number is lost
11 SUM(val ORDER BY val DESC) AS result_b ,
12 -- result_c is unknown due to unspecified order
13 SUM(val) AS result_c
14 FROM
15 number_set;
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Leveraging the Small-Scope Hypothesis Timeouts in bounded verification suggest
exploring counterexample downscaling and upscaling strategies informed by
the small-scope hypothesis [10, 5], converting hard instances into tractable ones
without losing discriminative power.

Tree-Structured LLM Interaction Rather than a single linear history (Fig. 4),
a tree-of-thoughts exploration [16] could expand several rewrite candidates in
parallel and prioritize promising branches by verifier feedback.

Fig. 4. Our current approach uses a linear interaction pattern which grows the LLM
context with each LLM response until a successful answer is discovered or number of
attempts is exhausted. One future direction is investigating how to run parallel LLM
attempts organized in a tree.

Improving Contextual Framing Schema translation to familiar canonical domains
(e.g., employees/products) may help the LLM reason about subtle semantic
differences [6, 7].

Automatic Prompt Optimization Automating prompt search (e.g., via program-
matic prompt optimizers) shows early promise for this task [1].

6 Conclusion

Faced with the reality that formal verifiers cannot handle many modern SQL
features and that LLMs can be unreliable, we have developed a hybrid approach.
Our system uses an LLM to robustly rewrite queries into verifiable forms and
then employs a SMT based formal verifier to find counterexamples that prove
non-equivalence.
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The system has a number of limitations and we have shared several research
directions to to make it more powerful, robust, and efficient. Despite its limitations
experiments with a dataset of 23,994 LeetCode query pairs show that we can
improve the coverage of a SOTA verifier and find new counterexamples that the
verifier missed. Our approach extends the practical reach of formal methods,
offering a promising path for computer aided verification of database systems.
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