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Abstract—Frontier-scale Large Language Models (LLMs)
demonstrate high accuracy in complex tasks but remain com-
putationally expensive and slow. Conversely, compact models
are efficient but often brittle, struggling with self-correction
and sensitivity to prompt phrasing. This project investigates
Automatic Prompt Optimization (APO) as a bridge to enhance
compact models for verifiable tasks. Using the GEPA (Genetic-
Pareto) framework, we optimize prompts for two distinct
tasks: SQL Synthesis (Example Generation) and SQL Analysis
(Counterexample Discovery). We introduce a novel contribution,
“Hyper-Reflection,” which utilizes frontier models to optimize
the reflection mechanism within GEPA itself. Furthermore, we
identify and resolve a critical “thinking truncation” failure mode
in compact models performing Chain-of-Thought reasoning. Our
results demonstrate that APO, combined with extended context
windows and Hyper-Reflection, allows a compact Qwen3-8B
model to achieve significant performance gains, solving the SQL
Synthesis task (100% success) and reaching 75% accuracy on
the challenging SQL Analysis task, outperforming baselines by
30%.

Index Terms—Prompt Optimization, GEPA, SQL Verification,
Hyper-Reflection, LLM Reasoning, Chain-of-Thought, Meta-
Optimization, Context Window Extension, Knowledge Distilla-
tion, Compact Language Models.

I. INTRODUCTION

Large Language Models have revolutionized natural lan-
guage processing, yet a fundamental tension exists be-
tween model capability and deployment cost. Frontier models
(Claude Opus, OpenAI GPT5, Google Gemini, ...) achieve
remarkable accuracy but require substantial computational
resources, while compact models (Qwen3-8b, ...) offer effi-
ciency at the expense of reliability. This work addresses a
critical question: Can systematic prompt optimization bridge
the capability gap, enabling compact models to approach
frontier-level performance on verifiable tasks?

Prompt engineering has become essential for deploying
LLMs effectively, yet crafting optimal prompts remains chal-
lenging due to model sensitivity to phrasing and format [1].
Manual prompt engineering is time-consuming and non-
transferable across models or tasks. Automatic Prompt Opti-
mization (APO) addresses these challenges through systematic
search over possible prompts, treating prompts as learnable
parameters that can be optimized using feedback from task
execution.

We focus on verifiable SQL tasks—SQL Synthesis (gen-
erating query examples with equivalence relationships)
and SQL Analysis (discovering counterexamples to query
equivalence)—because they provide unambiguous success cri-
teria through database execution. This verifiability enables

TIt

Reflection Instructions (RI)
Task Run + Feedback (TRF)

Task Instructions (TI)

RI
TRF1

TRF2

TRF3

GEPA Reflection

TIt+1

Fig. 1. GEPA Reflection mechanism. Reflection Instructions (RI) are applied
to Task Instructions (TIt) along with Task Run logs and Feedback (TRF t).
For SQL tasks, TRFt includes database engine error messages such as syntax
errors, constraint violations, and query result comparisons. The reflection
process outputs improved Task Instructions (TIt+1) that address observed
failure modes.
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Fig. 2. Hyper-Reflection: Applying prompt optimization to the reflection
mechanism itself. Multiple frontier models (e.g., Claude Opus, GPT-5, Gemini
2.5, ...) process reflection instructions (RIt) using a meta-prompt (HR) to
generate improved variants (RIt+1). Each model produces distinct reflection
templates (e.g., opus1, gemni1, gpt5think1), enabling exploration of
diverse reflection strategies. This addresses the recursive question: “If reflec-
tion helps tasks, can reflection help reflection?”

rigorous evaluation of optimization techniques without human
annotation.

Our work builds on GEPA [2], a reflective evolutionary
algorithm that evolves prompt populations using natural lan-
guage reflection. GEPA’s reflection mechanism (Figure 1) uses
a teacher LLM to analyze task execution feedback and propose
improved prompts. A key insight of our work is that this
reflection mechanism itself can be optimized.

We introduce Hyper-Reflection, a meta-optimization tech-
nique that applies prompt optimization to GEPA’s reflection
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instructions. As illustrated in Figure 2, we employ frontier
models (Claude Opus, OpenAI GPT-5, Google Gemini, ...)
to generate improved reflection templates. This approach em-
bodies Sutton’s “Bitter Lesson” [3]: rather than hand-crafting
reflection instructions, we leverage computation to discover
them automatically.

During our experiments, we uncovered a critical failure
mode: thinking truncation. When prompted with sophisti-
cated Hyper-Reflection generated templates, compact models
engaged in extensive Chain-of-Thought reasoning that con-
sumed the entire generation budget, leaving no tokens for
the actual answer. Resolving this required extending context
windows via YaRN [4], revealing an important principle: the
complexity of optimized prompts must be matched by adequate
generation budget.

The key contributions of this work are:
1) Hyper-Reflection: A novel meta-optimization technique

that applies prompt optimization to GEPA’s reflection
mechanism itself, using frontier models to improve
reflection instructions (Section III).

2) Thinking Truncation Analysis: Identification and reso-
lution of a critical failure mode where Chain-of-Thought
reasoning in compact models consumes the entire gen-
eration budget (Section VI-D).

3) SQL Task Benchmarks: Two verifiable SQL tasks—
Synthesis and Analysis—with automated evaluation us-
ing database execution feedback (Section IV).

4) State-of-the-Art Results: Achievement of 75% accu-
racy on SQL Analysis using a compact 8B model,
representing a 30-point improvement over baselines
(Section VI).

II. BACKGROUND AND RELATED WORK

Having outlined our contributions, we now situate Hyper-
Reflection within the broader landscape of LLM adaptation
techniques. Broadly, these techniques modify either (i) the
model’s parameters or (ii) the information presented in its
context at inference time. We refer to these two comple-
mentary paradigms as weights adaptation (i.e., model/param-
eter adaptation) and context optimization. Hyper-Reflection
belongs to the latter: it keeps the underlying model fixed and
instead meta-optimizes the reflective process that optimizes
the model’s prompt for a given verifiable task.

A. Weights Adaptation vs. Context Optimization

In weights adaptation, the goal is to change the model
itself. Classical knowledge distillation trains a smaller student
to match a teacher’s output distribution [5], yielding fast
inference but requiring a separate training run with gradient-
based optimization and substantial data. Parameter-efficient
fine-tuning (PEFT) methods reduce this cost by updating
only a small fraction of parameters [6]. Prefix tuning [7]
learns continuous key-value prefixes injected into Transformer
layers, while LoRA [8] inserts low-rank matrices into weight
layers. Although these approaches differ in how aggressively
they modify the model, they all adapt the model in param-
eter space—by updating or adding a small set of trainable

parameters—providing a continuous analog to discrete prompt
optimization [9].

By contrast, context optimization keeps the model’s weights
fixed and instead optimizes the sequence of tokens that pop-
ulate the context window at inference time. This includes
both tokens supplied before generation (e.g., instructions,
demonstrations, retrieved documents) and tokens the model
generates and then conditions on (e.g., intermediate reason-
ing, reflections, tool outputs). From the model’s perspective,
there is no intrinsic distinction between “prompt tokens” and
“thinking tokens”: all are simply positions in the same context
that shape subsequent predictions.

Within this broader view, “prompt-space” methods can
be seen as optimizing the initial portion of the context.
Automatic Prompt Optimization (APO) [10] and related ap-
proaches treat instructions, chain-of-thought templates, and
demonstrations as learnable parameters in a discrete search
space. AutoPrompt [11] performs gradient-guided token search
over discrete trigger tokens; APE [12] uses LLMs to generate
and select prompts; OPRO [13] iteratively refines prompts
based on feedback. These methods primarily optimize the seed
context the model starts from.

Context optimization offers key advantages: many methods
operate in a purely black-box setting, work with propri-
etary models, and produce interpretable, shareable artifacts—
especially those, such as APO, APE, and OPRO, that treat the
underlying model as an opaque scoring function. However,
gradient-based methods like AutoPrompt still require white-
box access, and all fixed-prefix approaches can be limited by
context length and may struggle with highly instance-specific
reasoning.

Other techniques explicitly adapt the context dynamically at
inference time. Retrieval-Augmented Generation (RAG) [14]
maintains an external document database and, at runtime, a
retriever selects relevant evidence that is concatenated into
the context, allowing the model to condition on query-specific
facts. Chain-of-thought (CoT) prompting [15] encourages the
model to generate intermediate “thinking tokens” that are
immediately re-ingested as part of its context, supporting step-
by-step reasoning. Reflection-based methods similarly induce
the model to write intermediate analyses, critiques, or plans
that then guide subsequent reasoning steps.

Hyper-Reflection resides squarely within this context-
optimization paradigm. Rather than modifying the base
model’s weights, it meta-optimizes the instructions which
reflective prompt optimization techniques (like GEPA) use to
generate new prompts.

B. GEPA and Reflective Optimization
GEPA [2] combines prompt optimization with reflection

and evolutionary search, and can be naturally interpreted as a
form of context optimization with an explicit reflective loop.
It maintains a population of prompt candidates, executes them
on task batches, collects trajectory feedback (including error
messages and intermediate reasoning), and uses a teacher LLM
to propose improved variants.

Operationally, GEPA alternates between: (1) executing
prompts and logging trajectories, (2) aggregating task-specific
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feedback, (3) reflecting via teacher LLM to propose mutations,
and (4) updating the Pareto frontier.

Related approaches include MIPROv2 [16], which uses
Bayesian optimization for multi-stage LLM pipelines, and
Deep Language Networks [17], which apply variational infer-
ence to optimize prompts across stacked LLM layers. Recent
work has built upon GEPA: C-Evolve [18] evolves prompt
groups with consensus-based voting; Maestro [19] jointly
optimizes agent graphs and configurations; Feedback De-
scent [20] uses pairwise comparisons with textual rationales;
and ACE [21] treats context as an evolving “playbook.” Our
Hyper-Reflection contribution is orthogonal to these advances
and could potentially be combined with them.

A distinct advantage for offline prompt optimization tech-
niques (GEPA and related) is the amortization of reasoning
cost. While Chain-of-Thought (CoT) and inference-time rea-
soning allow a model to reach correct answers by generating
intermediate “thinking tokens,” this incurs a cost for every
query at runtime. Shifting this computational effort to produce
an an optimized prompt creates a highly salient context that
guides the LLM to the solution with fewer intermediate steps.
If the optimized prompt captures the necessary reasoning
patterns statically, the marginal cost of ingesting these prompt
tokens is significantly lower than the cost of generating
and processing dynamic thinking tokens for every execution
instance.

III. METHODOLOGY

The core of our methodology is the “Template Improver”
(Figure 4), a meta-prompt designed to improve any instruction
template—including GEPA’s reflection instructions shown in
Figure 1.

A. Formalizing Hyper-Reflection
We can view prompt optimization as a hierarchical process.

Let M be an LLM and T be a verifiable task.
1) Level 0 (Inference): The model generates a solution y

given a task prompt Ptask and input x:

y ∼ M(Ptask, x)

2) Level 1 (Reflection): A teacher model (invoked by
GEPA) generates an improved task prompt P ′

task given
reflection instructions Preflect and execution feedback
F :

P ′
task ∼ M(Preflect, Ptask, F )

3) Level 2 (Hyper-Reflection): We introduce a meta-
optimization step where the reflection instructions them-
selves are optimized. Using a meta-prompt Pmeta (the
Template Improver), we generate improved reflection
instructions P ′

reflect:

P ′
reflect ∼ M(Preflect)

Finally, we select the optimal reflection strategy via argmax
over the validation performance V of the resulting task
prompts:

P ∗
reflect = argmax

P ′
reflect

 ∑
(x,y)∈Dval

V(M(M(P ′
reflect, . . . ), x))



B. The Challenge of Recursive Nesting

Implementing Hyper-Reflection presents a unique linguistic
challenge: nesting confusion. We are asking one LLM to fol-
low instructions (Pmeta) to improve another set of instructions
(Preflect) that improve task instructions (Ptask).

This creates a ”third-order” ambiguity. When the Template
Improver reads the subject template (e.g., ”You are an ex-
pert optimizer...”), it must distinguish between instructions
it should follow and text it should modify. Without strict
delineation, the model would collapse the layers, inadvertently
executing the reflection instructions rather than improving
them, or hallucinating constraints from the bottom-level task
into the top-level meta-instructions.

To resolve this, the Template Improver enforces several hard
rules to ensure robust operation (see Figure 4):

• Scope restriction: Modify only the subject template,
treating all other text as meta-specification not content
for rewriting.

• Recursion guard: If the subject template contains self-
referential phrases like “You are Template Improver,”
they are treated as literal text strings to prevent infinite
recursive application.

• Fact grounding: Derive domain-specific facts solely
from exemplars, inserting TODO markers for missing
details rather than hallucinating.

• Literal preservation: Preserve text within triple back-
ticks as literal content that should not be interpreted or
executed.

C. Data Source

For our experiments, we use a LeetCode SQL dataset
containing 23,994 query pairs. Ground truth equivalence was
established using VeriEQL [22], a bounded verification tool
based that provides formal guarantees about query equivalence
within specified bounds. Analysis of the dataset revealed that
33 target queries (official answers, paired with numerous
student attempts) dominated 81% of the examples, motivating
the addition of the SQL Synthesis task to generate more
diverse examples of SQL equivalence.

Importantly, our notion of SQL query equivalence follows
bag semantics (multiset semantics), not list semantics. Under
bag semantics, two queries are equivalent if they return the
same multiset of rows—duplicates matter, but row ordering
does not. This reflects standard SQL behavior where query
results are unordered unless an explicit ORDER BY clause is
specified. In our evaluation functions (Figures 8 and 12), we
sort results before comparison to ensure that row ordering does
not affect equivalence judgments, while preserving duplicate
sensitivity.

IV. TASK DEFINITIONS AND VARIANTS

Experiments were conducted using the DSPy frame-
work [23], which provides a declarative interface for spec-
ifying LLM-based programs and supports automatic prompt
optimization through various backends including GEPA. We
define two complementary SQL tasks with automated evalua-
tion.
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Fig. 3. GEPA Reflection Instructions and their ablation. The default template includes specific instructions for the teacher LLM to analyze execution logs,
error messages, and task feedback. The default0 ablation removes the red-highlighted sections, stripping the teacher of the ability to utilize task-specific
feedback. We use default as the base ”subject template” that the meta-optimizer attempts to improve, and default0 as a baseline to measure the value
of feedback integration.

Fig. 4. Template Improver meta-prompt for Hyper-Reflection. The prompt specifies: (1) the goal of enhancing instruction template clarity and usability;
(2) inputs including the subject template (enclosed in delimiters) and optional exemplars with feedback; (3) hard rules preventing recursive application,
preserving literal content, and deriving facts only from exemplars. The highlighted rules ensure robust operation: Rule 1 restricts modifications to the subject
template only; Rule 2 treats self-references as literal text; Rule 3 preserves backtick-enclosed content; Rule 4 uses TODO markers for missing information;
Rule 5 specifies output format.
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A. Task 1: SQL Synthesis (Example Generation)

The SQL Synthesis task generates diverse SQL query ex-
amples. Given random nouns as creative prompts, the model
must output:

1) A valid SQL Schema defining tables and relationships
2) A base query (query_sql)
3) An equivalent query (equivalent_query_sql) that

is structurally distinct but semantically identical
4) A non-equivalent query (nonequivalent_query

_sql) that appears similar but yields different results
5) INSERT statements demonstrating these relationships
Figure 5 shows the DSPy signature class for the initial

generation attempt, specifying the input (random words) and
five required outputs. For multi-step variants, Figure 6 shows
the refinement signature, which additionally accepts the pre-
vious attempt’s outputs and error feedback as inputs. The key
difference is that the refinement signature includes error as
an input field, allowing the model to address specific failures
identified during database execution.

Figure 7 shows a complete example output. The schema
defines three tables with foreign key relationships. The base
query and equivalent query both retrieve baker and bakery
information but use different SQL constructs (explicit JOINs
vs. subquery). The non-equivalent query adds a location filter
that produces different results.

The evaluation function (Figure 8) creates an in-memory
SQLite database, executes all statements, and performs two
key verifications: (1) the base and equivalent queries produce
identical sorted results, and (2) the base and non-equivalent
queries produce different results. SQL syntax errors or con-
straint violations are captured and returned as feedback for the
refinement loop.

B. Task 2: SQL Analysis (Counterexample Discovery)

This task focuses on proving inequality between queries.
Given two SQL queries verified as non-equivalent by VeriEQL,
the model must generate INSERT statements that result in
different execution outputs for the two queries. This rigorously
tests the model’s understanding of SQL semantics and edge
cases.

Figure 9 shows the initial DSPy signature, while Figure 10
shows the refinement signature that includes the failed attempt
and error feedback. The refinement signature’s key additions
are bad_sql_inserts (the previous failed INSERT state-
ments) and error (specific failure information), enabling
targeted correction.

Figure 11 illustrates a representative example. The two
queries both attempt to find students not in any department
but use different SQL constructs. Query 1 uses NOT IN with
a subquery, while Query 2 uses LEFT OUTER JOIN with
IS NULL. These constructs handle NULL values differently,
and the model must generate INSERT statements that expose
this semantic difference.

The scoring function (Figure 12) executes the schema,
applies the generated INSERT statements, runs both queries,
and compares their sorted results. Success is achieved only

when the results differ, validating that the model found a
genuine counterexample to equivalence.

C. Task Variants: Impact of Database Feedback

Using DSPy signature classes, we defined three variants of
LLM interaction flows to test how much structured feedback
the model needs:

• 1-Step: Direct generation (Question ⇒ Answer). The
model receives the task and produces output with no
opportunity for correction.

• 2-Step: Generation ⇒ Evaluation ⇒ Refinement. If an
error occurs, the model receives database error informa-
tion and can revise its answer once.

• 3-Step: Adds an additional refinement loop, giving the
model two chances to correct errors based on feedback.

These variants allow us to isolate how much improvement
comes from structured evaluator feedback versus from prompt
optimization itself. For both tasks, the metric is simply % suc-
cess over the evaluation set. Success means the database built,
queries ran, and the intended equivalence or non-equivalence
was demonstrated.

Figures 13 and 14 illustrate the flow diagrams for both tasks
across all three variants. The feedback loops enable the model
to learn from database execution errors and refine its outputs
accordingly.

V. EXPERIMENTAL SETUP

Experiments were conducted on dual RTX 5090 (32GB)
GPU servers. The student model, Qwen3-8B, was served via
vLLM [24] configured for high throughput (see Appendix A
for detailed configuration). Multiple experiments were run
in parallel targeting LLM throughput of 1,000+ tokens per
second (TPS) and KV cache usage above ∼90% to maximize
efficiency. Figure 15 shows the hardware utilization metrics
during our optimization runs, demonstrating sustained high
throughput across extended experiment periods.

A. Rollout Budget

While the original GEPA paper utilized budgets of 5,000 to
25,000 rollouts [2], we observed that significant gains occur
early in the optimization process. The performance curves
in [2] show that just a small fraction of rollouts at the start are
responsible for most gains, with diminishing returns thereafter.
We standardized our experiments to use a fixed budget of
500 rollouts to compare methods efficiently. Rollouts measure
work done by counting “task attempts” during optimization.

VI. RESULTS AND ANALYSIS

A. Database Feedback Experiments

Our first experiment examined how structured feedback
from the database engine affects task success across the 1-
Step, 2-Step, and 3-Step variants. The results in Figure 16
demonstrate that feedback from the database engine is crucial
for success. For SQL Synthesis:

• Baseline success climbs from 20.00% (1-Step) to 86.67%
(2-Step) to 93.33% (3-Step)
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SQL Synthesis Task 

Fig. 5. DSPy signature class for SQL Synthesis Task (1st attempt). The GenerateSQLSchema class defines the task interface: a single input field
random_words (creative prompts) and five output fields for schema, queries, and insert statements. The docstring serves as the task instruction that GEPA
optimizes. This signature is used for the initial generation in all task variants (1-Step, 2-Step, 3-Step).

SQL Synthesis Task 

Fig. 6. DSPy signature class for SQL Synthesis Task (Nth attempt with feedback). The RefineWithFeedback class extends the initial signature by
accepting the previous attempt’s outputs (initial_* fields) and database execution feedback (error field) as additional inputs. This enables the model to
diagnose and correct specific failures such as syntax errors, constraint violations, or incorrect query equivalence relationships. Used in the refinement steps of
2-Step and 3-Step variants.
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{schema_sql}

{inserts_sql}

{query_sql}

{equivalent_query_sql}

{nonequivalent_query_sql}

Fig. 7. SQL Synthesis Task: Example output demonstrating successful generation. The model creates a bakery database with three tables (bakeries, bakers,
bakery_baker) connected by foreign keys. The query_sql retrieves baker-bakery relationships using explicit JOINs. The equivalent_query_sql
produces identical results using a subquery (SELECT ... FROM ... AS combined). The nonequivalent_query_sql adds a WHERE clause filtering by
location, producing different results. INSERT statements populate the tables to demonstrate these relationships.

• GEPA improves results to 51.67% (1-Step), 93.33% (2-
Step), and 100% (3-Step)

• GEPA-MERGE achieves 46.67%, 85.00%, and 98.33%
respectively

For SQL Analysis:
• Baseline success climbs from 45.00% (1-Step) to 57.50%

(2-Step) to 60.00% (3-Step)
• GEPA improves results to 62.50% (1-Step), 70.00% (2-

Step), and 70.00% (3-Step)
• GEPA-MERGE achieves 67.50%, 67.50%, and 67.50%

respectively
The Analysis task is clearly harder, even with feedback

available. The improvement from 1-Step to 2-Step is sub-
stantial (45% → 57.5% for baseline), but the marginal gain
from 2-Step to 3-Step is smaller (57.5% → 60%), suggesting
diminishing returns from additional feedback loops.

B. Hyper-Reflection Experiments

We evaluated Hyper-Reflection optimized prompts on the
single-step variants of both tasks, which ask the LLM the
question and check results without giving a second chance to
change the answer. This isolates the effect of prompt quality
from feedback loops.

To understand the contribution of different components, we
tested several reflection prompt variants: the GEPA default
prompt, Hyper-Reflection variants generated by frontier mod-
els (opus1, gemnitf1, gpt5think1), and an ablated
default0 prompt. The default0 variant was created
by removing the feedback-processing instructions from the
default GEPA reflection prompt, causing it to ignore task ex-
ecution feedback entirely. This ablation helps isolate whether
performance gains come from the reflection mechanism’s
ability to analyze feedback or from other aspects of the prompt
structure.

The results in Figure 17 reveal an asymmetry between the
two tasks. For SQL Synthesis, GEPA combined with Hyper-
Reflection templates proved highly effective: the baseline
success rate was 20.00%, GEPA with the default template
raised this to 86.67%, and the gemnitf1 Hyper-Reflection
template achieved 98.33% success. The opus1 template
achieved 95.00% and gpt5think1 achieved 96.67%.

However, on the SQL Analysis task, GEPA’s default prompt
dominates with 70% task success (25 points above the 45%
baseline). Surprisingly, the Hyper-Reflection prompts under-
performed: opus1 achieved 62.50%, gemnitf1 achieved
only 47.50% (barely above baseline), and gpt5think1
achieved 65.00%. Even more surprisingly, the ablated



8

Fig. 8. Scoring function for SQL Synthesis Task (pseudocode). The evaluation creates an in-memory SQLite database, executes the schema and INSERT
statements, then runs all three queries. Success (score=1) requires: (1) no SQL syntax or constraint errors, (2) base and equivalent queries produce identical
sorted results, and (3) base and non-equivalent queries produce different results. Detailed error messages are returned as feedback for refinement steps, enabling
targeted correction of specific failure modes.

SQL Analysis Task SQL Analysis Task 

1st attempt (no feedback)
Fig. 9. DSPy signature class for SQL Analysis Task (1st attempt). The
GenerateSQLCounterexample class takes three inputs—the database
schema and two non-equivalent queries—and outputs INSERT statements that
cause the queries to return different results. The docstring instructs the model
to find a counterexample demonstrating non-equivalence.

default0 (which ignores feedback entirely) achieved
67.50%, close to the default’s 70%.

This raised a critical question: Why did Hyper-Reflection
optimized prompts help SQL Synthesis but not SQL Analysis?

C. Smarter Teacher Experiments

One hypothesis was that the Hyper-Reflection optimized
prompts were confusing the Qwen3-8B model when used
as both teacher and student. The original GEPA paper also
uses a self-teaching setup. To test this, we experimented with
“smarter” teachers: GPT-4.1-mini and GPT-4.1.

The results in Figure 18 show partial success: task per-
formance improves and GEPA’s default prompt no longer

SQL Analysis Task 

Nth attempt + feedback

Fig. 10. DSPy signature class for SQL Analysis Task (Nth attempt with
feedback). The RefineCounterexampleWithFeedback class extends
the initial signature with bad_sql_inserts (the previous failed attempt)
and error (database execution feedback) as inputs. This allows the model
to understand why its previous counterexample failed—whether due to syntax
errors, constraint violations, or queries still returning identical results—and
generate a corrected attempt.

dominates when using smarter teachers. With GPT-4.1-mini
as teacher:

• opus1 leads at 72.50% (+27.5 points over baseline)
• default achieves 65.00% (+20 points)
• gemnitf1 achieves 60.00% (+15 points)
• gpt5think1 achieves 62.50% (+17.5 points)
Oddly, GPT-4.1 (the smartest teacher) did not achieve the

best results. With GPT-4.1 as teacher, opus1 dropped to
60.00%, gemnitf1 to 57.50%, and gpt5think1 to only
50.00% (barely above baseline). This counterintuitive result
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{sql_schema}

{sql_inserts}

{sql_query1}

{sql_query2}

OUTPUT

INPUTS

Fig. 11. SQL Analysis Task: Example input and successful output. Inputs: A schema with DEPARTMENTS and STUDENTS tables, plus two non-equivalent
queries—Query 1 uses NOT IN with a subquery, Query 2 uses LEFT OUTER JOIN with IS NULL. Both attempt to find students not in any department,
but handle NULL values differently. Output: The model generates INSERT statements that expose this semantic difference by inserting a student (Bob) with
NULL department id. Query 1 returns no results (NOT IN with NULL produces UNKNOWN), while Query 2 correctly returns Bob, proving non-equivalence.

Fig. 12. Scoring function for SQL Analysis Task (pseudocode). The function executes the schema, applies the generated INSERT statements, runs both
queries, and compares their sorted results. A score of 1 (success) is returned only when the queries produce different results, validating that the model found a
genuine counterexample. If results are identical, the model receives feedback indicating that the queries must produce different results, prompting refinement
in multi-step variants.
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Fig. 13. SQL Synthesis Task flow diagrams for 1-Step, 2-Step, and 3-Step variants. 1-Step: Direct generation with no feedback opportunity. 2-Step: Output
is evaluated; if errors occur (syntax, constraint, or equivalence failures), the model receives feedback and generates a refined attempt. 3-Step: Adds a second
evaluation-refinement cycle, giving the model two opportunities to correct errors.

Fig. 14. SQL Analysis Task flow diagrams for 1-Step, 2-Step, and 3-Step variants. The structure mirrors SQL Synthesis from Figure 13, but refinement
focuses specifically on counterexample generation. When evaluation shows that both queries still return identical results, the model receives this feedback
along with its failed INSERT statements and attempts to generate a counterexample that exploits different semantic edge cases.

suggested another factor was at play.

D. “Over Thinking” Bottleneck

Investigation of the execution logs revealed a high frequency
of response parsing errors. The Qwen3-8B model, when
prompted with complex Chain-of-Thought instructions gen-
erated by Hyper-Reflection, engaged in excessive “thinking.”
The generated <think> blocks were so extensive that they
consumed the entire generation budget (8k tokens), causing
no actual answer to be generated.

Figure 19 shows the timeline of events during our exper-
iment runs. The high density of red ‘x’ markers (indicating
errors) across jobs 5–10 reveals systematic failures. These
jobs corresponded to Hyper-Reflection optimized prompts that
induced more complex reasoning.

Figure 20 provides a concrete example. The model’s reason-
ing extends for thousands of tokens, analyzing the SQL queries

and considering various approaches to finding a counterexam-
ple. However, the generation is truncated before the model can
output the actual SQL INSERT statements. This explains why
complex Hyper-Reflection prompts initially degraded SQL
Analysis performance—they induced more thorough reasoning
that exceeded the available token budget.

E. High Context Experiments
To resolve the truncation issue, we reconfigured vLLM to

a “High Context” mode (Qwen3-8B-hc). We utilized YaRN
embeddings [4] to extend the context window and generation
limit to 40,960 tokens (see Appendix A).

The tradeoff: ten-hour experiments became twenty-hour
experiments due to increased generation lengths. However,
with the larger generation budget, the model could complete
its thinking and produce answers.

This adjustment allowed the student model to complete its
reasoning chains. As shown in Figure 21, the opus1 Hyper-
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RTX 5090 GPU Server #1

RTX 5090 GPU Server #2

Fig. 15. Hardware utilization metrics on dual RTX 5090 servers during optimization runs. Left column: Throughput over time showing sustained 1,000–2,000
tokens per second (TPS). Middle column: Concurrent request count maintained at 30–40 requests for optimal batching efficiency. Right column: KV cache
usage at ∼90%, indicating efficient GPU memory utilization with minimal waste. The top row shows Server #1; bottom row shows Server #2. Gaps in the
graphs indicate breaks between experiment runs.

Fig. 16. Impact of database feedback on task success. Upper table (SQL
Synthesis): Baseline success climbs from 20% (1-Step) to 86.67% (2-Step)
to 93.33% (3-Step); GEPA achieves 100% on 3-Step. Lower table (SQL
Analysis): Baseline improves from 45% to 57.50% to 60%; GEPA reaches
70% on 2-Step and 3-Step. Results demonstrate that structured feedback from
database execution is crucial for both tasks, with diminishing returns from
additional feedback loops on the harder Analysis task.

Reflection template, which previously failed due to truncation,
now achieved state-of-the-art performance of 75.00% success,
outperforming the GEPA default.

Key observations from the High Context experiments:

• The baseline improved from 45% to 65%, indicating that
extended context alone helps the model reason about SQL

Fig. 17. Impact of Hyper-Reflection on task success (1-Step variants, Qwen3-
8B as teacher and student). For SQL Analysis, Hyper-Reflection prompts
underperforms compared to default GEPA. However in SQL Synthesis,
Hyper-Reflection prompts excels in performace over default GEPA. The
asymmetry between tasks motivated investigation of why Hyper-Reflection
helped Synthesis but not Analysis.

semantics.
• GEPA with the default template actually decreased to

55%, suggesting the default prompt was optimized for
shorter contexts and may have become suboptimal when
more space was available.

• The opus1 Hyper-Reflection template achieved the best
result at 75%, a 30-point improvement over the standard
configuration baseline.
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Fig. 18. Task success with smarter teachers on SQL Analysis 1-Step
(Qwen3-8B student). GPT-4.1-mini teacher: opus1 leads at 72.50% (+27.5
over baseline), default at 65.00%, gpt5think1 at 62.50%, gemnitf1
at 60.00%. GPT-4.1 teacher: Performance unexpectedly drops—opus1
achieves only 60.00%, gemnitf1 57.50%, gpt5think1 only 50.00%. The
counterintuitive result that the smartest teacher performed worst suggested
another factor was at play.

• gpt5think1 achieved 70.00%, while gemnitf1 re-
mained at 62.50%.

• The ablated default0 dropped to 62.50%, now under-
performing the Hyper-Reflection variants.

These results validate our hypothesis: Hyper-Reflection
prompts induce more sophisticated reasoning that requires
adequate generation budget. When context is limited, the
sophisticated prompts backfire by consuming tokens on rea-
soning that never completes. When context is extended, the
sophisticated prompts unlock superior performance.

VII. DISCUSSION AND FUTURE WORK

Our experiments reveal several important insights about
prompt optimization for compact models:

Context is Compute. The “thinking truncation” phe-
nomenon demonstrates that the complexity of optimized
prompts must be matched by adequate generation budget. This
creates a tradeoff between prompt sophistication and inference
cost that practitioners must consider. More powerful prompts
may require extended context windows, increasing latency and
memory requirements.

Task-Dependent Optimization. Hyper-Reflection prompts
provided dramatic improvements for SQL Synthesis (98.33%)

but initially failed on SQL Analysis (47.50%). This asymme-
try suggests that optimal reflection strategies may be task-
specific, and meta-optimization approaches should account
for task characteristics. SQL Synthesis benefits from creative
exploration, while SQL Analysis requires systematic edge-case
reasoning.

Teacher-Student Dynamics. Using smarter teachers (GPT-
4.1-mini, GPT-4.1) helped but did not fully resolve the issues.
Surprisingly, the smartest teacher sometimes produced worse
results, possibly due to generating prompts that were too
sophisticated for the student model. This suggests a “capa-
bility matching” principle: teacher-generated prompts should
be calibrated to the student’s capacity.

Trade-offs Between Adaptation Approaches. As dis-
cussed in Section II, weight-space distillation yields fast
inference but requires training infrastructure; prompt-space
optimization requires only black-box access but is limited by
context length; runtime reasoning maximizes performance but
consumes tokens per query. Our results show that prompt-
space methods can achieve substantial gains when combined
with context extension, offering a middle ground between
adaptation cost and inference efficiency.

Several promising directions for future research emerge
from this work:

Adaptive Reflection Strategies. In this work, we selected
the single best reflection template (P ∗

reflect) for the entire
optimization run. However, different stages of optimization
may benefit from different reflection styles—early stages may
require high-temperature creative exploration (e.g., opus1),
while later stages benefits from strict constraint checking (e.g.,
gpt5think1). Future work could implement a Multi-Armed
Bandit algorithm within the GEPA loop to dynamically select
the optimal reflection template P

(t)
reflect at step t based on the

immediate reward (fitness gain) of the populations generated.
Extending Hyper-Reflection to Other Domains. Our SQL

tasks provide clear success criteria through database execution.
Extending Hyper-Reflection to other domains with verifiable
outcomes (code generation, mathematical reasoning, formal
verification) would test its generalizability.

Early Stopping for Thinking Tokens. Implementing early
stopping of thinking tokens generation would ensure an answer
is always generated, even under token budget constraints.
This could be achieved through monitoring the reasoning
phase and forcibly transitioning to output when a threshold
is approached.

Learning from Optimization Trajectories. A potentially
transformative direction would be to systematically convert
optimization trajectories into training data for prompt optimiz-
ers. Methods like GEPA, C-Evolve, Maestro, Feedback De-
scent, and ACE produce rich trajectories—evolving prompts,
pairwise preferences, and textual rationales—that are currently
discarded after optimization.

Building on Black-Box Prompt Optimization (BPO) [25],
which learns to rewrite user instructions using human prefer-
ence datasets, one could collect logs from multiple optimizers
across benchmarks and base LLMs. These trajectories could
be transformed into training examples where a model learns
to map from original instructions to improved prompts. Such
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Fig. 19. Timeline of events during SQL Analysis optimization runs showing systematic failures. Each row represents a different job (optimization configuration);
the x-axis shows time. Markers indicate: green circles (start), plus signs (info messages), red ‘x’ (errors), green squares (successful completion). Jobs 5–10
show high error density (abundant red markers), corresponding to Hyper-Reflection prompts that induced complex reasoning. Jobs 1–4 show fewer errors,
corresponding to simpler prompt configurations. The pattern reveals that sophisticated prompts caused systematic failures.

Fig. 20. Example of “thinking truncation” failure. The model’s <think> block consumes the entire 8k token generation budget with extensive SQL analysis—
considering NULL handling, date comparisons, edge cases, and multiple solution strategies. The reasoning is truncated mid-sentence (visible at bottom), never
producing the required INSERT statements. This explains why Hyper-Reflection prompts degraded SQL Analysis performance: they induced more thorough
reasoning that exceeded the available token budget.
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Fig. 21. Task success with YaRN high context configuration on SQL
Analysis 1-Step. Upper table (standard 8k context): Results reproduced
from earlier experiments showing baseline at 45%, default at 70%, Hyper-
Reflection prompts underperforming. Lower table (40k high context):
Baseline improves to 65% (+20 from extended context alone); GEPA default
drops to 55% (optimized for shorter contexts); opus1 achieves state-of-the-
art 75% (+30 over standard baseline, +10 over high-context baseline). Results
validate that Hyper-Reflection prompts require adequate generation budget to
unlock their potential.

a system—which we tentatively call LEAP (Learning from
Evolved and Augmented Prompts)—would distill the behavior
of expensive search-based optimizers into lightweight, deploy-
able prompt rewriters.

Key research questions include: How do synthetic prefer-
ence data from optimizers interact with human preference
datasets? What is the sample efficiency of trajectory-based
learning compared to pure search? Can models learn generaliz-
able prompt improvement strategies that transfer across tasks?

VIII. CONCLUSION

We demonstrated that Automatic Prompt Optimization is
a viable strategy for enhancing compact LLMs on verifiable
SQL tasks. Key findings include:

1) Feedback Boosts Success: Feedback from the database
engine (1-step vs 2-step vs 3-step flows) provides im-
mense performance gains. For SQL Synthesis, baseline
success increased from 20% to 93%; for SQL Analysis,
from 45% to 60%.

2) Thinking Truncation: We identified a critical failure
mode where excessive <think> blocks consume the

generation budget, truncating actual answers. This ex-
plains why “smarter” prompts can paradoxically degrade
performance without sufficient context.

3) Reasoning Requires Budget: Complex prompts gener-
ated by APO induce long Chain-of-Thought sequences.
Standard context limits (8k tokens) can be insufficient;
extending context via techniques like YaRN [4] is nec-
essary to unlock the performance of optimized prompts.

4) Hyper-Reflection Works: Optimizing the reflection
template via frontier models (opus1, gemnitf1)
yields superior instructions compared to human-written
defaults, provided the student model has the capacity
to execute them. The SQL Synthesis task was essen-
tially solved (98.33% success) after applying Hyper-
Reflection.

With these optimizations, we achieved a 75% success rate
on SQL Analysis Task (Counterexample Discovery) using a
compact 8B model, representing a 30-point improvement over
baselines. Our Hyper-Reflection technique offers a general
approach for meta-optimization that could be applied to other
prompt evolution systems.
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APPENDIX

A. vLLM Launch Configurations

Standard Configuration (8k context):
vllm serve Qwen/Qwen3-8B \

--download-dir /workspace/models \
--host 127.0.0.1 \
--port 18000 \
--max-num-seqs 128 \
--enable-prefix-caching \
--enable-chunked-prefill \
--max-long-partial-prefills 1 \
--tokenizer-pool-size 8 \
--tokenizer-pool-type ray \
--enable-reasoning \
--reasoning-parser qwen3 \
--override-generation-config \
’{"max_new_tokens":8192}’

Transformer-based models are limited by their pre-trained
context length, which proved to be a critical bottleneck in our
experiments. YaRN (Yet another RoPE extensioN) [4] pro-
vides a compute-efficient method to extend context windows,
requiring 10× fewer tokens and 2.5× fewer training steps than
previous methods. YaRN combines NTK-aware interpolation
with attention scaling, enabling models to extrapolate beyond
their original training length while preserving performance on
standard benchmarks.

High Context Configuration with YaRN (40k context):
vllm serve Qwen/Qwen3-8B \

--download-dir /workspace/models \
--host 127.0.0.1 \
--port 18000 \
--max-num-seqs 128 \
--max-model-len 90112 \
--enable-prefix-caching \
--enable-chunked-prefill \
--max-long-partial-prefills 1 \
--tokenizer-pool-size 8 \
--tokenizer-pool-type ray \
--enable-reasoning \
--reasoning-parser qwen3 \
--override-generation-config \
’{"max_new_tokens":40960}’ \
--rope-scaling \
’{"rope_type":"yarn", "factor":2.75, "
original_max_position_embeddings": 32768}’

The key differences in the high context configuration are:
• max-model-len 90112: Extends the total context

window
• max_new_tokens: 40960: Allows generation up to

40k tokens
• rope-scaling: Applies YaRN with factor 2.75 to

interpolate beyond the original 32k position embeddings
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