MIRROR: Measuring, Improving and Reproducing
Ranking with Open Retrieval models

Mehak Dhaliwal and Jasmine Lesner
Santa Barbara, California, USA

Abstract

We conduct a replication study of recent advances in zero-shot
document ranking with Large Language Models (LLMs), focusing
on the Setwise approach introduced at SIGIR 2024. Our results
confirm high fidelity in effectiveness metrics (NDCG@10 within
+3%) but reveal efficiency discrepancies, including 33-40% lower
token usage for setwise methods. Expanding on the original work,
we evaluate performance on the NovelEval-2306 dataset, showing
strong ranking capabilities for queries beyond the models’ training
cutoff. Systematic prompt engineering yields up to 40.7% improve-
ments in NDCG@10 for specific method-dataset pairs, with setwise
methods benefiting the most. Experiments with instruction-tuned
and conversationally fine-tuned models (Llama 3.1, Llama 2) show
consistent gains without added computational cost. These findings
validate the original conclusions and highlight strategies for opti-
mizing LLM-based ranking systems through prompt engineering
and model selection.

CCS Concepts

« Information retrieval; - Language models; « Retrieval mod-
els and ranking; - Evaluation of retrieval results;

Keywords

Zero-shot document ranking, Large Language Models (LLMs), Set-
wise ranking, Pairwise ranking, Listwise ranking, Prompt engi-
neering, TrecDL datasets, BEIR datasets, NDCG@10, Information
retrieval, Model efficiency, Query latency, BM25, Computational
cost analysis, Reproducibility

1 Introduction

We selected the paper introducing Setwise, a novel method for
zero-shot document ranking using Large Language Models (LLMs).
This approach enhances efficiency by reducing LLM inferences
and prompt token usage during ranking while maintaining high
effectiveness. The paper, titled "A Setwise Approach for Effective and
Highly Efficient Zero-shot Ranking with Large Language Models" [10],
was presented at the 47th International ACM SIGIR Conference on
Research and Development in Information Retrieval (SIGIR 2024).

We chose this paper because it presents a new methodology that
addresses efficiency challenges in zero-shot ranking with LLMs,
offering a promising research direction. Previous literature has of-
ten lacked a fair and consistent comparison of the effectiveness
and efficiency of various techniques. This paper fills that gap by
providing a rigorous comparative framework for prompting meth-
ods—Pointwise, Pairwise, Listwise, and Setwise—shedding light on
their trade-offs. Moreover, with zero-shot and few-shot learning
being rapidly evolving fields, this work holds significant relevance.

2 Background

This section summarizes the key algorithms and datasets. Readers
should refer to [10] for foundational details essential to understand-
ing our replication and improvements.

2.1 Key Algorithms

Re-ranking algorithms refine the order of documents retrieved by
a fast but approximate initial ranking. These algorithms, while
more resource-intensive, optimize the top results for greater rele-
vance. They are crucial for surfacing the most relevant content in
applications like search engines. Pointwise: Scores each document
independently for relevance [2, 6, 9]. Variants include: (1) Yes/No
Generation (pointwise.yes_no): Ranks by the likelihood of "yes."
(2) Query Likelihood Modeling (pointwise.qlm): Ranks by query-
generation likelihood. These methods are efficient but depend on
model logits and can suffer from calibration issues. Listwise: Gen-
erates ranked lists (listwise.generate) using sliding windows to re-
rank document chunks iteratively [3, 4, 7]. This method is more
efficient than Pointwise but relies on coherent list generation. Pair-
wise: Compares document pairs for relevance [5]. Basic approaches
(pairwise.allpairs) are expensive. Optimized variants use sorting
algorithms, e.g., heap sort (pairwise.heapsort) or bubble sort (pair-
wise.bubblesort), balancing effectiveness and efficiency. Setwise:
Processes multiple documents simultaneously for faster sorting (set-
wise.heapsort, setwise.bubblesort). It can also refine Listwise rankings
using logits (listwise.likelihood), achieving strong effectiveness with
greater efficiency than Pairwise methods.

2.2 Key Datasets
The authors [10] assess performance of re-ranking using:

e TrecDL Datasets [1]: TrecDL 2019: 8.8M passages, 503K
queries, 43 test queries (~50 GB). TrecDL 2020: Similar
structure with document and passage ranking tasks (~75
GB).

e BEIR Datasets [8]: Includes datasets like Covid, NFCor-
pus, Touche, DBPedia, SciFact, Signal-1M (RT), News, and
Robust04, ranging in size from ~10 MB to ~20 GB.

In this study extend the analysis to the NovelEval-2306 Dataset
[7], featuring 21 queries with relevance judgments for 20 passages
per query.

2.3 Key Metrics

The authors in [10] evaluate Effectiveness (using NDCG@10,
which assesses ranking quality) and Efficiency with:

e Average LLM inferences per query.
e Average prompt tokens per query.

o Average generated tokens per query.
e Average query latency (in seconds).

In this report, we use a metric for our ability to reproduce their
published results:

Measured — Published
Published

Discrepancy % =

The ideal value for this metric is zero. A large positive or negative
Discrepancy % suggests a mismatch between our measurements
and the published results, indicating potential issues.

To evaluate impact of our algorithm modifications on measured
results we use:

Modified — Original
Original

Increase % =

For NDCG@10, a high positive Increase % is desirable but for
query latency, a negative Increase % is ideal.

3 Method

We pursued three objectives: (1) Reproduce the results from [10].
(2) Apply the work to additional datasets and LLMs. (3) Explore
potential improvements to the work.

The key results in [10] are summarized in two tables. Table
2 in [10] reports the effectiveness NDCG@10) and efficiency of
various ranking methods tested on the TREC DL 2019 and 2020
datasets, comparing three sizes of the Flan-t5 model (large, x1, and
xxl). And Table 3 in [10] presents the effectiveness of zero-shot
ranking methods across multiple BEIR benchmark datasets, again
comparing the three model sizes.

We began by cloning the repository at https://github.com/ielab/
llm-rankers, as referenced in [10]. To streamline experimentation,
we wrote scripts to automate Pyserini commands, collect evaluation
logs, and load the results into a Python notebook. While awaiting
experimental results, we also imported from [10] both Table 2 and
Table 3 into the notebook to prepare for comparative analysis.

For all experiments: (1) Initial retrieval used BM25 via the Py-
serini library with default settings. (2) Re-ranking was performed
on the top 100 documents retrieved by BM25. (3) Evaluation focused
on the NDCG@10 metric.

4 Observations: Measured vs. Published

Running experiments we collected over 3,000 metrics, categorized
as follows: 17% were directly from [10], 60% were measurements to
replicate their results, 23% were new measurements evaluating mod-
ifications to their algorithms. Our dataset, along with the Python
notebook used for analysis, includes a cached copy of our collected
data and many tables and charts. In this section, we present a sum-
mary of our efforts to reproduce and improve upon the results in
[10].

4.1 TrecDL Metric Discrepancy (Figure 1)

This chart is a match for [10]’s Table 2 which reports the effec-
tiveness (NDCG@10) and efficiency of various ranking methods
tested on the TREC DL 2019 and 2020 datasets. Our chart shows
the Discrepancy % in each matching value.

Mehak Dhaliwal and Jasmine Lesner

Observations

o Substantial negative discrepancies (—96%) in inference counts
were observed for pointwise methods, indicating potential
differences in implementation for inference counting.

e Setwise methods show consistent negative discrepancies

in generated token counts (—33% to —40%), likely due to

variations in token generation definitions.

NDCG@10 discrepancies were minor (mostly within +3%),

supporting successful replication of effectiveness results.

e Pairwise methods displayed varied discrepancy patterns
across metrics, reflecting diverse influences in efficiency met-
rics.

e Patterns of discrepancies were consistent across TREC-DL19

and TREC-DL20 datasets, as well as across model sizes (large,

xl, xx1).

Prompt token discrepancies were notably larger for setwise

and pairwise methods, suggesting differences in prompt en-

gineering approaches.

Causes

e Aninvestigation revealed that the —96% discrepancy in point-
wise inference counts occurred because [10] used batch size
1 for their paper but had their shared code configured for
batch size 32.

o Differences in library versions can lead to changes in how

operations are implemented or executed.

Dependencies (e.g., TensorFlow, PyTorch) and GPU drivers

directly influence model performance.

Pretrained model weights are occasionally updated in public

repositories. If downloaded at different times or from differ-

ent sources, slight differences in initialization could impact

token generation and inference.

Even small updates to datasets, such as corrections or added

examples, can influence model outputs.

Code available in repositories might not exactly match what

was used in the original study.

Assessment

o Challenges: Large discrepancies in efficiency metrics (infer-
ences, tokens) and systematic patterns of divergence indicate
that some implementation details were not fully replicated.

o Successful Aspects: The NDCG@10 values, the primary effec-
tiveness metric, show minimal discrepancies, and the relative
performance ranking of methods is consistent with the orig-
inal study.

o Overall Assessment: This represents a partial replication suc-
cess. While effectiveness metrics validate the main conclu-
sions, efficiency results highlight the importance of detailed
implementation documentation in ensuring replicability in
ML research.

4.2 BEIR NDCG@10 Discrepancy (Figure 2)

This chart matches [10]’s Table 3 which presents the effectiveness
of zero-shot ranking methods across multiple BEIR benchmark
datasets, again comparing the three model sizes. Our chart shows
the Discrepancy % in each matching value.

https://github.com/ielab/llm-rankers
https://github.com/ielab/llm-rankers

MIRROR: Measuring, Improving and Reproducing
Ranking with Open Retrieval models

TrecDL19 - flan-t5-large TrecDL20 - flan-t5-large
© 0.4 0.6 o 0.4 1.2
N N
";\ae & ‘qi\se o
" o
o1 0.0 0.6 ® o 1 0.0 1.1
o f
oo 058
e)
i o
o L 0.0 0.0 0.0 01 & L 0.0 0.0 01 0.8
2ot o
Ca Ca
e e
o 51 0.7 0.0 0.0 ¥ 51 0.0 0.0 0.4
0"
A0 A%°
o R
‘5@‘"’ ¢ 1 0.0 -25.5 0.0 “5@‘"’ < 1 0.0 24.1 0.0
o' o'
A\ AN
2 k-
96 —\92
o ot
&1 0.2 03 03 03 & « 0.0 0.0 0.6 0.0
&0 &
e Py
d e
N E 0.0 0.0 0.0 0.0 o E 0.3 0.4 10 0.4
*© I & o
o o A o
e 262
qi\‘wl\" &1 2.7 388 21.0 388 @\‘@\" &1 2.4 383 19.6 38.4
))
20 20
X <
& &
o 1 13 34.7 15.9 34.7 o 1 05 338 143 338
0 0
\)\1“\6 ' 0 ' 0 \gu“\z ' | ' |
& o s o > &) o © 3
;,a““\g e ‘e“(’z a S ;,e,“ﬂ\” oe* (e,“(’e o 0"
\\06 . \(\\,\. a‘eé “06 e ‘0‘,\. a@é
/@ a“"“ @ eﬁe}
TrecDL19 - flan-t5-x| TrecDL20 - flan-t5-xI
o 0.2 0.6 o 3.4 1.2
o o
'\EP" \52
o o
o1 0.0 0.6 ® o 1 0.0 1.1
o o
oo 055
ey)
W A
o L 0.2 0.0 0.0 0.0 o L 0.2 0.0 0.0 0.5
&° s
2 2 : 2 B“g‘
o L 03 0.0 0.0 i L 0.0 0.0 05
& o o «
z““e\\ 2 ¥
5\\“"’ g 0.0 -23.9 0.0 4\“‘" 0.0 -22.4 0.0
* T N e
N N
2 2
- 9(’/ .\ge
ot oo
- 0.1 0.1 0.0 & - 0.0 0.5 15 0.5
= o
e? @®
g o
& « 0.0 0.0 0.0 0.0 & 0.0 0.7 14 0.7
0 ls)
ye° N
a“ddo Z“\‘v‘o
vi\‘@\" .- 0.7 -40.3 22.7 -40.3 @\@!\"] 1.8 39.9 21.5 39.9
50)
29 29
¥ e
(& &
& o1 0.9 326 -13.4 326 e o1 12 32.6 12.9 32.6
0 0
v\)\l“\e ' 0 ' 0 \gu“\z ' . ' .
2 Q S > > e Q] 3]
ngl"’ o8 o o e aawi"’ e @ e P
& e o b & « e e
9@ a“e‘ 2@ e\‘e"
TrecDL20 - flan-t5-xx|
© 02 . 0.4 1.2
N N
& o
o R
Qc\‘““ qa\‘“w
o1 0.2 o1 0.0 1.1
o o
5~ e
N §&
o R
ol o
& E 0.3 0.0 0.0 0.2 & E 0.0 0.0 0.1 0.1
° °
™ 3 G <
e 8- 0.1 0.0 0.0 o 8- 0.0 0.0 05
)
g o
e\‘yg\\ 2 W
o' 5"
o < 1.4 19.6 0.0 o « 1 28 18.1 0.0
We? N
2 2
- e e
e e
\3 W«
2 1 0.6 0.0 0.0 3.9 & 1 0.1 0.4 12 0.4
o &
3 o
. Se_X\"‘D eZ“aa
< S
S . 0.0 0.1 0.0 0.1 Qz,\‘-“‘ 0.0 15 2.3 15
\e’=°<‘ e
Qb v\o Zbev‘o
va@‘* .1 35 40.2 923 40.2 Qa\‘““\ﬁ .1 03 38.9 20.1 38.9
1e) 1s)
i i
&% < ‘,5’“23
i i
£ - 03 333 143 333 e «- 09 334 136 334
0 0
v\gu"\e I [! [o I [l i
e o S > S -3 o] 3
ot el o o R 2 o o o N
o o o 5 B o o 3¢
9@ oo 0 o

Figure 1: Six heatmaps compare replication results (of Table 2 in [10]) for Flan-T5 models (large, x1, xx1) on TREC-DL19 (left)
and TREC-DL20 (right). Rows show model sizes; columns separate datasets. Discrepancies (%) between measured and published
values across four metrics (NDCG@ 10, inferences, prompt tokens, generated tokens).

Observations

e Most discrepancies are very small, typically within +2%,
indicating high agreement between measured and published
NDCG@10 values.

e The flan-t5-xx1 heatmap contains many missing values
(white cells), indication incomplete measurements for this
model size.

o A notable outlier was observed: —25.5% for the
pairwise.bubblesort method on the SciFact dataset
with flan-t5-1arge.

e Setwise methods tend to show slightly larger discrepancies
compared to pointwise and pairwise methods.

e Results are more complete for flan-t5-1arge and flan-t5-x1,

providing better coverage of datasets and methods.

e Certain datasets, such as Covid and Robust04, exhibit more
consistent replication results across methods, while the Sig-
nal dataset shows greater variability in discrepancies.

Causes

o The high number of missing values for flan-t5-xx1 is due
to computational resource constraints during the replication
effort. Section B explores this further.

o Consistently small discrepancies across most measurements
could result from:

- Minor preprocessing differences between the replication
and original experiments.

— Variations caused by random initialization effects.

— Differences in hardware or software environments.

e The —25.5% outlier on SciFact may reflect:

— A possible error in the original reported results.

— An unaccounted-for implementation detail specific to the
pairwise.bubblesort method.

— Dataset-specific preprocessing or handling differences.

Assessment

o Challenges:

— Incomplete replication for the flan-t5-xx1 model due to
missing measurements.

— A small number of notable outliers, especially the —25.5%
discrepancy for pairwise.bubblesort on SciFact.

— Systematic differences in setwise methods could indicate
implementation variations not fully captured in the repli-
cation.

o Successful Aspects:

— Most discrepancies are within +5%, demonstrating strong
alignment between measured and published values.

— The general pattern of results is consistent across datasets,
methods, and model sizes where measurements are com-
plete.

— Measured discrepancies are systematic and minor, sug-
gesting acceptable implementation differences rather than
fundamental issues.

o Overall Assessment: This replication effort can be consid-
ered successful. The small discrepancies (typically within
+2%) confirm the published results with high fidelity. The
exceptions, such as missing values and outliers, do not under-
mine the overall conclusions but highlight areas for further

Mehak Dhaliwal and Jasmine Lesner

investigation and emphasize the importance of detailed doc-
umentation in ensuring replicability in machine learning
research.

4.3 Replication of Effectiveness and Efficiency
Tradeoffs

Figures 3(a) and 3(b) replicate findings from [10] (Figure 3) on the
impact of two hyperparameters: ¢, which controls the number of
documents compared simultaneously in setwise prompting, and r,
the number of sliding window repetitions in listwise prompting.

Figure 3(a) shows the tradeoff between efficiency and effective-
ness as c¢ increases. Higher c values reduce query latency but may
compromise effectiveness due to document truncation caused by
LLM input length limitations. Additionally, the heap sort algorithm
consistently outperforms bubble sort in efficiency.

Figure 3(b) reveals a linear relationship between latency and
r. Listwise likelihood, which incorporates setwise prompting, is
consistently more effective and efficient than listwise generation.

4.4 Replication of Sensitivity to the Initial
Ranking

Previous work has highlighted the sensitivity of Listwise and Pair-
wise re-ranking methods to the initial ranking order ([5, 7]). We
evaluated this sensitivity for these methods and the setwise ap-
proach using three variations of the BM25 list: (1) original, (2)
inverted, and (3) randomly shuffled.

Figure 4 shows results with the Flan-T5-large model. Listwise
likelihood (using setwise prompting) demonstrates greater robust-

ness to initial ranking order compared to Listwise generation. Heapsort-

based methods (pairwise and setwise) deliver consistent perfor-
mance across rankings, with setwise slightly outperforming pair-
wise. Bubblesort-based methods are more affected by initial rank-
ings, though setwise bubblesort is more robust than pairwise. Over-
all, setwise methods exhibit superior robustness to initial ranking
variations.

5 Observations: NovelEval Performance

Table 1 summarizes our NovelEval benchmarks. Consistent with
previous findings, all re-ranking methods outperform BM25, con-
firming that improvements stem from the models’ ranking capabili-
ties. Setwise and pairwise prompting achieve the best performance,
with setwise prompting being more efficient. This highlights that
setwise prompting enables strong ranking even when the models
lack prior topic knowledge.

6 Observations: Fine-Tuned Model Performance

We explored the impact of model fine-tuning by comparing base
models (Llama 3.1 8B, Llama 2 7B/13B) with their instruction-tuned
(Llama 3.1 8B-Instruct) and conversationally fine-tuned (Vicuna
7B/13B) versions. As shown in Figure 5, fine-tuned models consis-
tently improved NDCG@10 without significant latency increase,
suggesting fine-tuning enhances ranking capabilities even without
explicit ranking optimization.

MIRROR: Measuring, Improving and Reproducing
Ranking with Open Retrieval models)

NDCG@10 Discrepancy % (Measured vs Published) for flan-t5-large

@ - 0.0 -0.3 -0.4 -0.3 0.2 0.6 -0.2 2.1
o
-
5 \4 o 0.0 -0.3 -0.8 0.3 0.0 0.4 0.3 0.0
Q o &
e ~
-\93‘\3 o 0.0 -0.3 0.0 0.0 0.2 0.3 0.0 0.0
6\0 (3(30
© o0 8 0.0 0.0 0.3 -0.2 0.6 0.0 0.0
el
'6‘\“\6 e’\'\‘\o0
A W - 0.0 -0.3 -1.3 -4.8 2.7 0.6 -0.2 0.0
.6_‘@\6 . Qfao("
W xe? e 0.0 0.3 0.0 0.0 0.0 0.3 0.2 0.0
ot o
Qaw e 0.4 2.2 6.9 1.9 25.5 3.8 1.8 0.2
. e 0 = -u. . U, . = . . o .
. q\\\c’ Q‘J
@ o < T 2.4 9.9 0.2 4.2 0.3 18 0.6
ee\)x‘\\ 0\e‘.vo] I I | | 1 1 1
\Y A0 S e "2 < \ s B
o 3 N o & & o ¥ O
2 o X9 NC ef 1\ \O e o
6@,‘"‘\\5 @ v\QCO ~0' Og‘? [Xe =) W Q,O‘O\)
NDCG@10 Discrepancy % (Measured vs Published) for flan-t5-xI
- -0.1 0.0 1.9 -0.3 -0.3 1.0 -0.2 -0.2
o8
R -0.3 0.0 0.0 0.2 0.0 -0.2 0.0
Qo\ .)
3 -
-\58‘\! o1 0.0 0.0 0.2 0.3 0.0 0.0 0.0 0.2
O)
o @&
¢ . o0 N 0.7 -0.6 2.3 0.2 -1.5 0.3 1.1 -0.2
. W e'\\“0o
W) e.\'\‘i- & 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
.\gx_\l‘\c’ 3960
o 2% . 0.0 0.3 0.0 0.0 0.1 0.3 0.0 0.2
\Y
Q‘b\vﬁ \o\eeo
\00“ - 15 -1.1 -1.1 -3.0 1.2 -4.5 3.7 -0.4
\(‘d\c’e' 3950
* ,gex@ & 1.2 0.3 2.7 -1.8 -0.7 -4.7 -2.0 -0.9
o e , , , ' ' ' ' '
\Y A S e N < \ s B
o N N oy AN <o e N <O
ey o X0 " e & () 2 S
c)e@{\s V\Q(P <0 o e = W %0\0\}
NDCG@10 Discrepancy % (Measured vs Published) for flan-t5-xx|
- 0.3
e&({\
<2
e - 0.7
<‘)O\V\ o)
)! ~
.ce -
W o
.\‘\’(. ‘_\0
QO o (2
of 3"
Cd .‘\00
\\c" \'\‘4-9'\\ & -
ad o
o eaﬂf’)
el o™
¢ \e°®
M B 1.4 18 1.9 1.8
s o
¥ o9
N @56.‘\6?’ o -0.9 0.2
\' 5 1 1 1 1 1 1 1 1
L \o\e
30 NN S e \2 T N 3 B
o i\ N oy OV e A N Q
- o 0 N e & e} e o
ge@\s C ‘\QCP <0 O%Q [Xe o W oo

Figure 2: The figure shows three heatmaps comparing replication attempts of NDCG@ 10 results (from Table 3 in [10]) across
eight BEIR datasets. Heatmaps are grouped by Flan-T5 model size (large/x1/xxl). Rows represent ranking methods, columns
represent datasets. White cells indicate missing data.

TREC DL 2019 TREC DL 2020

0.70 0.68 4
0.66 1
0.68
o)
® @ 0.64 1
V] Q
g 066 8
= =
0.62 1
0.64
0.60
0.62 0.58 1
10 20 30 40 50 10 20 30 40 50
Latency (s) Latency (s)
@ Flan-t5-large (Bubblesort) @ Flan-t5-xI (Bubblesort) @ Flan-t5-xxl (Bubblesort)
Flan-t5-large (Heapsort) @ Flan-t5-xl (Heapsort) @ Flan-t5-xxI (Heapsort)
(a) Setwise
TREC DL 2019 TREC DL 2020
0.70
0.675 A
0.68
0.650 4
0.66 9
0.64 0.625 7
o o
2 2
8 8
g 0.62 £ 0.600
= z
0.60 4
l 0.575 A
0.58
0.550 4
0.56
0.525 A
0.54
0 50 100 150 0 50 100 150
Latency (s) Latency (s)

@ Flan-t5-large (Generation) @ Flan-t5-xI (Generation) @ Flan-t5-xxI (Generation)
Flan-t5-large (Likelihood) @ Flan-t5-xI (Likelihood) @ Flan-t5-xxI (Likelihood)

(b) Listwise

Figure 3: Effectiveness and efficiency tradeoffs across meth-
ods. (a) Setwise: scatter plot numbers indicate documents
compared (c) at each step of the sorting algorithm. (b) List-
wise: scatter plot numbers indicate sliding window repeti-
tions (r).

7 Observations: Modified vs Original

We explored prompt tuning the pointwise, pairwise and setwise
algorithms as shown in Figure 9, Figure 10, Figurel1, and Figure
12. In this section we compare versions of pointwise, pairwise and
setwise that use our modified prompts to the original versions using
the Increase % metric from Section 2.3.

Mehak Dhaliwal and Jasmine Lesner

Table 1: Effectiveness and efficiency results obtained on Nov-
elEval dataset. The best NDCG@ 10 results are highlighted
in boldface.

Methods NDCG@10 | #Inferences | Pro. tokens | Gen. tokens | Latency (s)
BM25 0.684 - - - -
pointwise.qlm 0.691 4.0 15503.9 - 0.6
pointwise.yes_no 0.738 4.0 16394 - 0.7
g_h% listwise.generation 0.776 2421 123971.1 1230.8 32.6
= | listwise.likelihood 0.797 2421 114045.0 - 12.8
2 pairwise.allpair 0.802 4853.6 3000465.5 48536.2 426.6
é pairwise.heapsort 0.811 211.6 130628.5 2115.7 17.8
pairwise.bubblesort 0.804 658.7 406968.7 6587.1 56.5
setwise.heapsort 0.806 72.4 41609.2 361.9 5.8
setwise.bubblesort 0.844 306.7 175563.7 1533.6 30.0
pointwise.qlm 0.696 4.0 15503.9 - 1.2
pointwise.yes_no 0.770 4.0 16394 - 13
= listwise.generation 0.777 242.1 123975.4 1227.8 36.7
vy | listwise.likelihood 0.814 242.1 114064.0 - 12.5
'g pairwise.allpair 0.818 4853.6 3000465.5 48536.2 521.7
& | pairwise.heapsort 0.815 208.7 128694.6 2086.7 22.4
pairwise.bubblesort 0.813 549.4 339230.2 5493.8 79.2
setwise.heapsort 0.789 72.9 41947.1 364.5 7.5
setwise.bubblesort 0.808 311.8 178694.5 1558.8 31.6
pointwise.qlm 0.684 4.0 15503.9 - 3.2
pointwise.yes_no 0.784 4.0 16394 - 3.4
= | listwise.generation 0.816 242.1 123975.6 1228.2 60.0
:': listwise.likelihood 0.825 2421 114073.4 - 32.5
E pairwise.allpair 0.797 4853.6 3000465.5 48536.2 944.1
= pairwise.heapsort 0.778 213.9 132073.9 2139.0 424
pairwise.bubblesort 0.806 718.1 443344.9 7181.4 138.4
setwise.heapsort 0.808 72.9 41988.6 364.3 14.3
setwise.bubblesort 0.818 302.8 173491.1 1513.8 59.6

7.1 BEIR NDCG@10 Increase (Figure 6)

Observations

o Setwise methods show consistently larger positive changes,
particularly on Touche and SciFact datasets.

o A significant improvement of 40.7% is observed for pair-
wise.bubblesort on SciFact using the Flan-T5-large model.

e Pointwise methods often exhibit modest or negative changes,
indicating relative insensitivity to prompt modifications.

e Datasets such as Touche and SciFact demonstrate higher
sensitivity to prompt variations, leading to notable improve-
ments.

e The xl model displays more stable and consistent changes
compared to the large model, highlighting greater robust-
ness.

o Certain method-dataset combinations achieve improvements
exceeding 10%, emphasizing the impact of prompt changes.

e Flan-T5-large generally yields more pronounced improve-
ments than xl, suggesting size-specific dynamics.

Causes

e Larger improvements for setwise methods imply that origi-
nal prompts were suboptimal for these techniques, allowing
room for optimization.

o Dataset-specific sensitivities may reflect task or domain char-
acteristics affecting performance.

e The x] model’s stability suggests that larger models have
more robust representations, making them less affected by
prompt variations.

e Dramatic improvements for SciFact could indicate that origi-
nal prompts overlooked domain-specific needs, making changes
particularly effective.

MIRROR: Measuring, Improving and Reproducing
Ranking with Open Retrieval models

(a) TREC DL 2019

o
(<))
1

NDCG@10
©
>

o
N
L

0.0 -

listwise.generate listwise.likelihood pairwise.heapsort

(b) TREC DL 2020

setwise.heapsort pairwise.bubblesort setwise.bubblesort

0.6 1
0.5 1
= 0.4+

Z 0.2 A
0.14

0.0 -

listwise.generate listwise.likelihood pairwise.heapsort

setwise.heapsort pairwise.bubblesort setwise.bubblesort

=1 BM25 = InverseBM25 = RandomBM25

Figure 4: Sensitivity to the initial ranking for the Flan-T5-large model.

o Pointwise methods’ modest changes suggest less dependence
on or responsiveness to prompt engineering compared to
other methods.

Evaluation of Modifications

o Challenges:

Performance gains are inconsistent, with some methods
and datasets showing reduced performance.

Many changes are minor (under 5%), questioning the mod-
ifications’ overall impact.

Divergent behavior between large and x1 models raises
concerns about generalizability across architectures.
Results may not extrapolate to untested datasets or models,
limiting the changes’ broader applicability.

o Successful Aspects:

Substantial gains exceeding 10% in key scenarios, with a

40.7% improvement for setwise.heapsort on SciFact, demon-
strate the modifications’ effectiveness.

Over all datasets, setwise methods appears to have bene-
fited the most from the modified prompts.

Consistent positive outcomes for the xI model imply ro-
bustness and scalability of improvements.

Improvements span multiple datasets for certain methods,
showing generalizability across domains.

Worst-case declines are limited to —7%, avoiding cata-
strophic performance degradations.

Assessment: The prompt modifications show clear benefits, par-
ticularly for setwise methods. Key evidence includes:

(1) Substantial improvements, including a 40% gain for pair-
wise.bubblesort, outweigh modest degradations.

(2) The x1 model’s consistent results suggest the changes scale
well with larger architectures.

(3) Gains for newer methods indicate potential for further opti-
mization through prompt engineering.

(4) Limited degradations (no worse than —7%) ensure that the
modifications do not introduce significant trade-offs.

While the our prompt modifications are not universally effective,
they yield substantial benefits in specific method-dataset combi-
nations, demonstrating significant potential without severe down-
sides.

7.2 BEIR Metric Increase (Figures 7 and 8)
Observations

o Model Size Matters: flan-t5-large and flan-t5-x1 models often
display different, sometimes opposite patterns of changes in
metrics.

o Metric Correlations: Changes in inference counts often corre-
late with changes in generated tokens, suggesting an inter-
dependence between these metrics.

o Dataset Sensitivity: Certain datasets, such as Robust04 and
SciFact, exhibit more dramatic changes, indicating varying
levels of impact based on dataset characteristics.

Llama 3.1-8B (X) vs Llama 3.1-8B-Instruct (O)

Llama 2 7B (X) vs Vicuna 7B (O)

Mehak Dhaliwal and Jasmine Lesner

TREC DL 2019

Llama 2 13B (X) vs Vicuna 13B (0)

® o C) 0ss 8 ® 0]
(@) 06
06 050 @) 8
0.45
HE %8| o gos| & %
® ® ®
0.40
g g ® g
] o Qo4
Z 04 Z 035 z
0.30
0.3 0.3
0.25
0, 88 8 0 1B
0 50 100 150 200 0 50 100 150 200 250 300 0 50 100 150 200 250 300 350 400
Latency (s) Latency (s) Latency (s)
TREC DL 2020
Llama 3.1-8B (X) vs Llama 3.1-8B-Instruct (O) Llama 2 7B (X) vs Vicuna 7B (O) Llama 2 13B (X) vs Vicuna 13B (O)
(@) () 0.60) @ @)
Q@ 0.50
0.6 Q @) N 055
0.45 0.50 ®
0.5
2 g’ 83 S 0.40 S 0.45 2\3
% g g 0.40
Lé 0.4 L%) 0351 @ é
035
0.30 &
0.3 030
0.25 0.25
021888 0.20 a 0.20 &
0 50 100 150 200 0 50 100 150 200 250 300 0 50 100 150 200 250 300 350 400
Latency (s) Latency (s) Latency (s)

[setwise.heapsort [setwise.bubblesort

[pairwise.heapsort

I pairwise.bubblesort [listwise.generation I listwise.likelihood

Figure 5: Effectiveness (NDCG@ 10) and efficiency (Latency (s)) comparison of base models (pictured with ‘X’) and their fine-
tuned counterparts (pictured with ‘0’).

o Method-Specific Patterns:
- Pointwise methods show minimal changes in inference
counts, highlighting stability in efficiency.

— Pairwise methods often exhibit larger changes across all
metrics, reflecting higher sensitivity to prompt modifica-
tions.

— Setwise methods show mixed results, with some instances
of dramatic efficiency gains.

o Efficiency-Effectiveness Tradeoff: Some methods achieve si-
multaneous NDCG@10 improvements and reductions in
computational costs, pointing to potential optimization op-
portunities.

Causes

e Model Size Differences: Divergent patterns between flan-t5-
large and flan-t5-x]1 may reflect:

— Optimal prompting strategies varying by model capacity.

— Greater robustness of larger models (e.g., flan-t5-x1) to
prompt variations.

o Dataset-Specific Variations: Differences across datasets could

— Variations in optimization opportunities depending on
architectural choices.

Evaluation of Modifications

o Challenges:
— Improvements are inconsistent across datasets and models,
making generalization difficult.
— Some significant degradations occur in efficiency metrics,
raising concerns about reliability.
o Successful Aspects:
— Several methods show simultaneous effectiveness and ef-
ficiency gains, demonstrating potential for improvement.
- Dramatic improvements (e.g., > 30%) are observed in some
cases, highlighting areas of opportunity.
— Optimization potential is evident in ranking methods, sup-
porting further exploration.
— No catastrophic failures suggest the approach is funda-
mentally sound.
— Some consistent patterns across datasets and methods
provide actionable insights for refinement.

be due to: Overall Assessment: The results show promise but also highlight
— Domain-specific language characteristics influencing prompt ~ risks and limitations. Dataset and model-specific optimization ap-
effectiveness. pears more effective than generalized prompt modifications. Incon-

- Varying complexity in the underlying ranking tasks.
o Method-Specific Patterns: Discrepancies might arise from:

- Differences in prompt dependency across ranking meth-
ods.

sistencies across datasets and models indicate that a one-size-fits-all
approach is unlikely to succeed. A nuanced strategy that accounts
for dataset characteristics and model capacity is more practical.
While degradation risks are present, the potential for significant

MIRROR: Measuring, Improving and Reproducing
Ranking with Open Retrieval models

NDCG@10 Increase % (Modified vs Original) for flan-t5-large

@ - 0.9 -6.5 -1.2 2.0 11 -7.0 2.7 -0.9
o
o
Qo‘° o 1 0.0 -4.9 1.7 5.7 -0.6 -1.8 -5.2 -1.1
N
25
e
0.\(\\ o - 0.5 2.1 4.5 1.9 0.1 -6.1 5.0 10.9
o
' ex\eaﬂ’
« A5 « -1.3 15 -4.3 2.2 1.7 -2.5 1.8 5.2
o 0
ye?
o“““
Ca « -1.2 1.2 11.3 1.4 40.7 10.1 6.3 -2.4
R\ o
Qa\ o°
ot
e@;\‘) - -7.1 19.2 -2.5 11.7 4.0 2.9 -3.2
2 O
N | | ' \ | ' ' i
o°
o o > e @ & A o B
& ¥ o N O & o Al &0
66@\ C v\S((,o ~0 Oq;? [Xe E) W ‘kdoo
NDCG@10 Increase % (Modified vs Original) for flan-t5-xI
- 1.5 -1.8 1.7 2.9 3.7 2.6 0.2 -2.3
NN
s
& - 0.4 0.3 5.2 37 34 24 -1.9 -0.4
o
2
¥
R S @ 0.4 -0.8 2.6 3.1 0.1 -5.7 2.5 -3.8
%)
N “eaﬂ’a
« o « 0.4 0.3 -2.3 0.4 -4.0 1.9 -6.0
O ‘0‘0\850
N\
'\5e3° & 0.4 -0.9 8.6 1.4 1.2 7.3 -2.9 -0.6
R\ o
N ‘(\eaQe
e@;\’v"" 0.7 9.7 1.6 2.5 4.1 1.2 0.4
o o
N ! \ . ! ! . . !
o°
oo o R e §o & &) > D‘
66@‘58 ¥ w\?cﬁ‘q & 0%‘?66\ «K° go© et Q\ov“'”@

Figure 6: Heatmaps show percentage changes in NDCG@ 10 scores when prompts for re-ranking methods were modified. Rows
represent methods, columns are BEIR datasets, and each heatmap corresponds to a Flan-T5 model size (large/xI).

improvements justifies further investigation when modifications
are carefully matched to the use case.

8 Conclusion

This study contributes to zero-shot document ranking with Large
Language Models (LLMs) in three key ways.

First, our replication of [10] confirms the effectiveness of their
approach while revealing discrepancies in efficiency metrics. We
aligned closely with the original study on ranking performance
(NDCG@10 within +3%) but observed notable differences in effi-
ciency, including a 96% reduction in inference counts for pointwise
methods (which we now know is due to differences in batch size 1
vs 32) and a 33%-40% decrease in token usage for setwise methods.
These findings underscore the need for precise implementation
documentation in machine learning research.

Second, our experiments on the NovelEval dataset show the ro-
bustness of LLM-based ranking methods when addressing queries
with information beyond the models’ training cutoff dates. All meth-
ods outperformed the BM25 baseline, with setwise and pairwise
approaches excelling. This result highlights the strong generaliza-
tion ability of LLMs, even for unfamiliar topics.

Third, our exploration of prompt engineering and model fine-
tuning demonstrates substantial potential for improvement. Prompt
modifications led to up to 40.7% gains in NDCG@10 for certain
method-dataset combinations, especially benefiting setwise meth-
ods. Fine-tuning experiments across models like Llama 3.1 and
Llama 2 showed consistent gains without major computational
costs. These results suggest that tailored optimization strategies
outperform one-size-fits-all approaches.

These findings offer guidance for both research and practical
applications. Researchers should prioritize comprehensive docu-
mentation and hardware transparency to ensure reproducibility.
Practitioners can achieve significant performance improvements
through prompt engineering and model selection, even with limited
computational resources. However, our work also highlights chal-
lenges in generalizing improvements across datasets and models,
reinforcing the need for context-specific optimizations.

References

[1] Nick Craswell, Bhaskar Mitra, Emine Yilmaz, Daniel Campos, and Ellen M.
Voorhees. 2020. Overview of the TREC 2019 Deep Learning Track. In Proceedings
of the Twenty-Eighth Text REtrieval Conference (TREC 2019).

[2] Percy Liang, Rishi Bommasani, Tony Lee, Dimitris Tsipras, Dilara Soylu, Michi-
hiro Yasunaga, Yian Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Kumar, et al.

Covid - flan-t5-large

0.0 Shil
0.0 2.9
-1.0 5.2 -1.0
1.2 7.7 1.2
=1lo3) o1 =1lo3}
e =3 e
I ' I
3 o
g’ < ‘«0\4_2‘\ "0‘@(\
© (0‘(\9 ‘\e@‘e
@

Touche - flan-t5-large

0.0 3.3
0.0 3.1
9.8 16.4 9.8
1.7 14.0 1.7
-3.8 -1.5 -3.8
-7.6 -5.8 -7.6
I \ I
N N
@ ¢ O"‘@ Sl
N o >©
Q« e‘\e
News - flan-t5-large
0.0 Sl
0.0 3.0
5.1 12.0 5.1
2.1 8.9 2.1
-1.6 1.0 -1.6
6.7 -4.4 -6.7
o
@ e N
\ 2 &
A & e(\""a‘
Signal - flan-t5-large
0.0 6.5
0.0 548
6.3 26.9 6.3
14.1 36.4 14.1
2.9 4.8 2.9
6.6 1.3 6.6
) © ©
O € R
N N <&
?(o‘(\ &2
&

Mehak Dhaliwal and Jasmine Lesner

Covid - flan-t5-xI

0.0 31
0.0 29
-0.3 6.0 -0.3
-1.5 4.9 -1.5
1.7 0.7 1.7
-1.6 0.8 -1.6
\ , \
©
@ ¥ <0
W@ N N
o ‘\e‘a
2
Touche - flan-t5-xl|
0.0 3.3
0.0 31
-2.3 4.2 -2.3
-4.8 1.7 -4.8
-2.7 -0.2 -2.7
-1.0 15 -1.0
\ \ \
N o
& <0 <ot
\(59’ « * &2
Q<© e
News - flan-t5-x|
0.0 Shl
0.0 3.0
-4.7 1.6 -4.7
-15.2 -9.6 -15.2
-1.1 14 -1.1
0.3 2.9 0.3
)
& e
5 L © &(
W (0,((\9 e‘a@
o
Signal - flan-t5-xI
0.0 6.5
0.0 5.9
-6.8 11.6 -6.8
7.4 11.8 7.4
-2.1 6.3 -2.1
-3.0 5.6 -3.0
> © ©
(@ <% <3¢
5! o¢ oS
X
?(06\ &2
&®

Figure 7: Eight paired heatmaps show the effect of prompt changes on reranking methods. Each pair compares flan-t5-large
(left) and flan-t5-x1 (right) across four BEIR datasets (Covid, Touche, News, Signal). Heatmaps display percentage changes in

NDCG @10, inferences, prompt tokens, and generated tokens, based on our replication baseline.

MIRROR: Measuring, Improving and Reproducing

Ranking with Open Retrieval models

Robust04 - flan-t5-large

Robust04 - flan-t5-xI

o 0.9 0.0 3.1
&
e
& - 1.1 0.0 2.9
® ©
S
¥
o &1 10.9 22.8 30.7 22.8
O 0
of o o
i . 5.2 44.9 54.3 44.9
o\ 0
\e
‘0\)60
s &1 2.4 1.8 0.5 -1.8
Qa\(‘“ <
- 3.2 5.2 3.0 5.2
X K<
ol ' ' ' .
o O e o o
o\ (,C’@ o ‘«0‘« <0¥
! W N (0‘(\9 (O‘Q
(2
&
NFCorpus - flan-t5-large
6.5 0.0 33
o8
\\-
o o 4o 0.0 31
oS
o o « 21 12 8.0 1.2
O 0
© ‘\eaﬂ’a
e - 15 1.3 8.2 1.3
o O
e
o 1.2 0.8 17 0.8
. \s\ae- 06' 1 . -U. . -0.
Qa\‘ o
o ;
S "
© " i . : : .
S A0 & < 0
st 0(59@ & O <0+
W \) (0«\\3 6‘6{8
Q BN
DBPedia - flan-t5-large
o 2.0 0.0 3.3
o
Qo’\v‘ o - 5.7 0.0 3.1
o
o - 1.9 5.6 145 5.6
4 e . b ' b
\(\6
W - 2.2 11.2 20.3 11.2
v 0
\&
o
" o0 «- 1.4 2.9 0.4 2.9
95\‘ eﬂa"
i « T 25 -18.1 -15.5 -18.1
& 0
2 1 1 1 1
‘0"‘0‘)\ A0 & o N
e R o <o <o
P2 W N P £
k3 e
e(\
SciFact - flan-t5-large
@ 11 0.0 3.0
N\"eg\
& - 0.6
© ©
\!Bs/“
o 8 « 0.1 0.0 0.0 0.0
) 0O
& <
e - 1.7
a“ 0"
&
00
We-‘"’ 407 2.7 6.6 2.7
R O
2 X 6,6‘)5
e . 11.7
ot
& O
e g . . .
e_o‘}‘o A0) © ©
3 @ &0 o e
e 0(’6 ge§ K <
e |V A ?(o«& e‘“‘e
e

o 23 0.0 31
AN
W
& o1 0.4 0.0 2.9
<~
=
e
o & 38 7.2 1.4 2
QO ;"O
L'
) e - 60 20.8 15.8 208
N s
0°
oo - 0.6 14 1.0 1.4
Qa\(50«
- 0.4 2.3 0.0 2.3
X X<
* ° \ \ ! \
.0‘)0 A0 & ot A
e@\e 0('6@ @e“ O <0¢
« W N\ w‘“‘) “e(a‘e
(;e
NFCorpus - flan-t5-xl
o 18 0.0 33
e
S&° - 03 0.0 31
o
S
e
o & 1 0.8 7.8 15 2.7
o e
(2
i 2 - 0.3 -23.6 -18.5 -23.6
o O
>
\S)
o - 09 2.4 0.1 2.4
9’6\‘ R N
o)
ot &
° o je° : : : .
e A0 < N
s o©® <« 0 <o
A\ D Q(O«\Q (\e‘a‘e
2
DBPedia - flan-t5-xI
o1 2.9 0.0 33
N
T
dex\" .- 37 0.0 31
o
2.
3
oo & 1 31 4.1 4.0 4.1
9 0
e _
RS g
® \e®
Wep“ - L4 -0.4 3.0 -0.4
R e)
Q"’\‘ = '
i <1 16 il 2.2 il
& &0
3¢ g g ' '
. ep\go‘) O e o®
o o @ e o
W W oo (\e@x
9
SciFact - flan-t5-xI
o1 37 0.0 3.0
N
v“\"eg
o - 3.4 0.0 2.9
o
S
o
o . 0.1 -15.2 -10.0 -15.2
o) &0
©
e
< e & 0.4 -42.7 -39.2 -42.7
o\ O
\&
e 4 12 22 0.2 22
Al
W o
A€ 2
o2 - 25 43 2.0 43
ot <
(’e 60 1 1 1 1
0"0‘)\ A0 & © ©
i o e O RS
12
? W oo™ o
&®

Figure 8: Eight paired heatmaps show the effect of prompt changes on reranking methods. Each pair compares flan-t5-large
(left) and flan-t5-x1 (right) across four BEIR datasets (Robust04, NFCorpus, DBPedia, SciFact). Heatmaps display percentage
changes in NDCG@10, inferences, prompt tokens, and generated tokens, based on our replication baseline.

3

=

[4

=

[10]

A

2022. Holistic evaluation of language models. arXiv preprint arXiv:2211.09110
(2022).

Xueguang Ma, Xinyu Zhang, Ronak Pradeep, and Jimmy Lin. 2023. Zero-
shot listwise document reranking with a large language model. arXiv preprint
arXiv:2305.02156 (2023).

Ronak Pradeep, Sahel Sharifymoghaddam, and Jimmy Lin. 2023. Rankvicuna:
Zero-shot listwise document reranking with open-source large language models.
arXiv preprint arXiv:2309.15088 (2023).

Zhen Qin, Rolf Jagerman, Kai Hui, Honglei Zhuang, Junru Wu, Le Yan, Jiaming
Shen, Tiangi Liu, Jialu Liu, Donald Metzler, et al. 2023. Large language models
are effective text rankers with pairwise ranking prompting. arXiv preprint
arXiv:2306.17563 (2023).

Devendra Singh Sachan, Mike Lewis, Mandar Joshi, Armen Aghajanyan, Wen-tau
Yih, Joelle Pineau, and Luke Zettlemoyer. 2022. Improving passage retrieval with
zero-shot question generation. arXiv preprint arXiv:2204.07496 (2022).

Weiwei Sun, Lingyong Yan, Xinyu Ma, Pengjie Ren, Dawei Yin, and Zhaochun
Ren. 2023. Is ChatGPT Good at Search? Investigating Large Language Models as
Re-Ranking Agent. ArXiv abs/2304.09542 (2023).

Nandan Thakur, Nils Reimers, Andreas Riicklé, Abhishek Srivastava, and Iryna
Gurevych. 2021. BEIR: A Heterogeneous Benchmark for Zero-shot Evaluation
of Information Retrieval Models. In Advances in Neural Information Processing
Systems (NeurIPS). https://openreview.net/pdf?id=wCu6T5xFje]

Shengyao Zhuang, Bing Liu, Bevan Koopman, and Guido Zuccon. 2023. Open-
source large language models are strong zero-shot query likelihood models for
document ranking. arXiv preprint arXiv:2310.13243 (2023).

Shengyao Zhuang, Honglei Zhuang, Bevan Koopman, and Guido Zuccon. 2024.
A Setwise Approach for Effective and Highly Efficient Zero-shot Ranking with
Large Language Models. In Proceedings of the 47th International ACM SIGIR
Conference on Research and Development in Information Retrieval (SIGIR °24).

APPENDIX: Relation to Class Material

The lecture slides on ranking and learning significantly complement
the project’s exploration of LLM-based document ranking. The cov-
erage of loss function design strategies — pointwise, pairwise, and
listwise approaches — parallels the ranking methods discussed in
our project. Both highlight how these fundamental approaches can
be applied whether using traditional machine learning or modern
LLMs. The slides’ theoretical foundation helps contextualize our
project’s practical implementation of zero-shot LLM ranking within
the broader field of learning-to-rank methodologies.

Pointwise Yes/No Prompts

Original Ours

Passage: this is passage 0 Passage: this is passage 0
Query: Give me passage 34 Query: Give me passage 34

Does the passage answer the
query? Answer 'Yes' or 'No'

Determine whether the passage
directly answers the query.
Respond with 'Yes' or 'No' only.

Figure 9

Pointwise QLM Prompts

Original Ours

Passage: this is passage 0

Based on the content of the
passage, generate a relevant and
meaningful question.

Passage: this is passage 0

Please write a question based on
this passage.

Figure 10

Pairwise Prompts

Mehak Dhaliwal and Jasmine Lesner

Original

Given a query "Give me passage
34", which of the following two
passages is more relevant to the
query?

Passage A: "this is passage 99"
Passage B: "this is passage 49"

Output Passage A or Passage B:

Ours

You are tasked with evaluating
the relevance of two passages to
a given query.

Query: "Give me passage 34"

Passage A: "this is passage 99"

Passage B: "this is passage 49"

Provide your output as 'Passage A’
or 'Passage B' based on which
passage is more relevant.

Figure 11

Setwise Prompts

Original

Given a query "Give me passage
34", which of the following
passages is the most relevant one
to the query?

Passage A: "this is passage 9"
Passage B: "this is passage 91"
Passage C: "this is passage 92"

Output only the passage label of
the most relevant passage:

Ours

Task: Determine which passage is
most relevant to the given query.

Query: "Give me passage 34"
Passages:

Passage A: "this is passage 9"
Passage B: "this is passage 91"
Passage C: "this is passage 92"

Instructions: Select the single most
relevant passage to the Query
Output format: Return only the
capital letter of the most relevant
passage

Figure 12

B APPENDIX: GPU Minutes (Figure 13)

Observations

o Efficiency Tiers: Pointwise experiments methods were the
fastest (3-22 minutes), followed by listwise methods (20-100
minutes), with pairwise methods being the slowest (often

exceeding 200 minutes).
o Model Size Impact:

— Substantial computation increase for complex methods as

model size grew.

— It appears there is minimal computation increase from
large to xI for simple methods however to fully use our
resources we ran two XL experiments per GPU and four
large model experiments per GPU.

- Very limited xxl experiments were completed. Experi-
ments with xx] models frequently crashed due to insuffi-
cient GPU memory despite having the entire 24GB GPU.

e Dataset Impact:

— DBPedia was consistently the most time-consuming dataset.
- News datasets were generally the fastest to process.
— There was a 5-10x variation in computation time for the
same method across different datasets.
o Setwise vs Pairwise: Setwise methods showed moderate effi-
ciency improvements over pairwise methods.

https://openreview.net/pdf?id=wCu6T5xFjeJ

MIRROR: Measuring, Improving and Reproducing
Ranking with Open Retrieval models)

GPU Minutes for flan-t5-large

GPU Minutes for flan-t5-xl
- 3.8 10.8 4.2 18.2 12.2 4.3 3.2 12.7

-3
‘Ql“\g E 4.0 10.9 4.2 17.9 13.4 4.5 3.2 13.0

o \l\o N N G el o We o
ew'\“'a «@ \&?CO‘Q o O%Qe 5"&3 5" W ?\0,00‘}'
o
GPU Minutes for flan-t5-xxI
- - 13.0 1.7 -
- - 13.3 1.7 -

D
o°
Q\O

: x A
S 5(;\@‘* oo ‘&e«"

W S S e
© coV QC"‘Q\) .‘0\)("\
W

Figure 13: GPU computation time (in minutes) required to evaluate different re-ranking methods across eight BEIR datasets.
The heatmaps are organized by Flan-T5 model size (large/x1/xx1 from top to bottom). Each cell represents the total GPU minutes
required for a specific method-dataset combination. Color intensity corresponds to computational demand, with darker reds
indicating longer processing times. Missing values (denoted by "-") indicate experiments that weren’t completed. The layout
corresponds to Table 3 in [10], allowing direct comparison between computational costs and reported NDCG@ 10 performance.

C APPENDIX: GPU Resources

In their paper [10] state: “We carried out the efficiency evaluations
on a local GPU workstation equipped with an AMD Ryzen Thread-
ripper PRO 3955WX 16-Core CPU, a NVIDIA RTX A6000 GPU with
49GB of memory, and 128GB of DDR4 RAM.”

Our research was carried out using NVIDIA A100s and RTX 4090
GPUs. Figure 14 shows the hardware we used to reproduce results
and Figure 15 shows the hardware we used to measure the impact

of our prompt modifications.

Ta0sr225 m2ases

hosto0277 South Korea, kR
%99 27976 Mps
Tx RTX 4090 Tosore s Jis77 e
82.2 Trops 238/24008 ¥eon E5-2680 v4 SKY Neutron M.2.
Moxcuo126 MSGE somcu svmen zewes Tianmsen
P 753270, 0P 6% Sttus: susoess, running nvidia/cuda.12.6 2-cudnn devel-ubuntu22 04/jupyter
s m212s hosts0is7 Quebec, GA
A7sesneps
Tx RTX 4090 poesn e traams usops
81.8 Trops 220724068 Xeon@E52690v4 TEAM TMEFP40.
Waxoupaize | WO leonege eess wows 1079008
GruTIIC, U Staws: 126
raem muzs hostsosez Netherands, N
Pro WS WRXBOE A2s0aneps
1x RTX 4090 Vo7
81.4 Trops 223724068 App Ryzen The. GIGABYTE GP-A.
MoxCUDA 126 WIS mosige Jweess e momocs
Gru g5 5TC,CUT Staws: 126

m25898 host138577 St-petersburg, RU
1x RTX 4090 Serenr B T
82.6 triors 212124068 AMD Ryzen 9 79. nvme

+a0a0821 m29430

1x RTX 4090 Yedsoe ecen

814 mors 0524008 eons E52680v4
Morcupa iz PRTOU ieomo e

hosts7910 South Kores, kR

i
Tmsan
SAMSUNG Mz

P 0%41C, G 1% Status: success, running nvdia/cuda 12.6.2-cudon devel-ubuntu22.04/jupyter

verified
age:
1250

Remsining:
22days

werified
age:
23hs
Remaining:
18 days.

verified

age:
s

Remaining
2mon, 224

verfied
age:
15t

Remaining
1 mon, 24d

veriied
age:
120

Remsining:
3mon,

®

.

[
H
o]

as e
$0.297/hr @

sn=mp°

2w =
$0.374/hr @D

sn=m@mp°

2B

L]
.

$0.349/hr @B

a = =-@g®

avs B
$0.321/hr @ ®

s n-@mE°

$0.268/hr @

Figure 14: Hardware configurations of RTX 4090 GPU in-
stances used for baseline replication experiments. Each in-
stance features 24GB VRAM, with varying CPU configura-
tions including Intel Xeon E5-2680/2690 v4 and AMD Ryzen
processors. The systems achieve between 81.4-82.6 TFLOPS

of computing performance.

Mehak Dhaliwal and Jasmine Lesner

Tezes mi12es9

host78023 Azons,uS veied
122293 -

1x RTX 4090 o et o

818 mors 8124008 aypRpen9se. Samsung SSD 9B, Remaining:

MocUpA1ze TSNS e mercs siven samocs 128y

6PU 58510, CPUTS Status: success, unning nvidia/cuda_ 126 2-cudn-devebubuntu22.04/jupyter

manzs hostozuzn Quebee, o veited
HiassL 15777 e P
1x RTX 4090 ore—. Vo793 s B
822 mors WIMOC ADERYCTIR. FeniiangSTIO2 Remsing
VaxcUbn 126 E65GEE somen sumsec o 099060 mon,

6PU T8 450, CPUSS Status: success, unning nvidla/cuda_12.6.2-cudn-devebubuntu22.04/jupyter

1613289 mar22 host7e4so Noruay No

85.165.115.75:41053-41005 a0

TRX40 Creator 7287 ens 1ge
1x RTX 4090 porton psams v s
81.4 mors 20928068 D Ryzen Thre. Micron_7450_MT. Remairing:
MoxcUDA1ze WUOGHS e mecs swwen samocs ”: alo|2le
P91 190, CPU 9% Status: success, unning nidia/cuda_12.6 2-cudn-devek ubuntu22.04jupyter
- $0.321/hr @
vy maon hest2essy oregon,us veied =g)
ROMEDS 755 mepe . o m=
1x RTX 4090 Poesa s 12acs st s
814 mors 0524008 gy WD_BLACK SN, Remsining:
x WA soeen e smwen s70m000 Tmon,14d
MaxCUDA: 126 sromo RIOE
RU.0% 170,09 2% Status: success, running nidia/cuda.12.6.2-cudm-devehubuntu22 04 jupyter
- $0.345/hr @ B
rerasas muze hostsvaez Netherlands, NL vrifed =g o
P10 WS WRXBOE 12787 Mg P 8jmj=
1x RTX 4090 eao e Trscue o shps Whes
814 mors 20928068 AMD Ryzen Thre. GIGABYTE GP-A. Remaining:
- SoiGws mosies susics owues 7109906 mon
WaxcUDA: 126 E s av e
GPU-B%420.CPU 3% Status: success, unning nidia/cuda_12.6.2-cud-devek ubuntu22.04/jupyter
. $0.362/hr @ B>

Figure 15: Hardware specifications of the NVIDIA RTX 4090
GPU instances used for experiments with modifications. The
systems feature AMD processors (including Ryzen 9, EPYC
7302, and Threadripper) paired with 24GB VRAM GPUs de-
livering 81.4-82.2 TFLOPS of computing performance.

	Abstract
	1 Introduction
	2 Background
	2.1 Key Algorithms
	2.2 Key Datasets
	2.3 Key Metrics

	3 Method
	4 Observations: Measured vs. Published
	4.1 TrecDL Metric Discrepancy (Figure 1)
	4.2 BEIR NDCG@10 Discrepancy (Figure 2)
	4.3 Replication of Effectiveness and Efficiency Tradeoffs
	4.4 Replication of Sensitivity to the Initial Ranking

	5 Observations: NovelEval Performance
	6 Observations: Fine-Tuned Model Performance
	7 Observations: Modified vs Original
	7.1 BEIR NDCG@10 Increase (Figure 6)
	7.2 BEIR Metric Increase (Figures 7 and 8)

	8 Conclusion
	References
	A APPENDIX: Relation to Class Material
	B APPENDIX: GPU Minutes (Figure 13)
	C APPENDIX: GPU Resources

