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Abstract—Food composition databases are essential for nu-
trition research and policy, yet they remain incomplete, with
only 31% of food-nutrient pairs directly measured in the USDA
database. We present a novel approach to predict missing
nutrient values by enriching food-nutrient knowledge graphs
with information derived from Large Language Models (LLMs).
Our method combines USDA data with OpenAl embeddings
and GPT-4o0-generated nutrient groupings to create a compre-
hensive graph with over 645,000 edges connecting 8,170 nodes.
We train Graph Neural Networks (GNNs) on this enriched
structure to predict missing nutrient values. Our best model
achieves 67.55% accuracy (predictions within £30% of true
values), substantially outperforming the baseline food group
median imputation method (30.29%). Through ablation stud-
ies, we demonstrate that most LLM-derived features improve
prediction performance, though some—like GPT-4o-generated
nutrient groups—unexpectedly reduced accuracy. Our approach
demonstrates how domain knowledge encoded in LLMs can
enhance structured prediction tasks, particularly when dealing
with incomplete data. This work contributes to making food
composition databases more complete and useful for nutrition
science and public health applications.

Index Terms—Nutrient Prediction, Knowledge Graphs, Large
Language Models, LLMs, Graph Neural Networks, GNNs, Em-
bedding Vectors, Data Imputation, Food Composition Databases,

I. INTRODUCTION

Food composition databases like the USDA’s Food Nutrition
Data are vital tools for research, diet planning, and policy.
They aim to document the nutrient content of foods to serve
scientists, nutritionists, and consumers [/1]]. Yet, these databases
remain incomplete. In our analysis of USDA data, only 31% of
the possible 1.17 million food-nutrient pairs have been directly
measured. About 24% are estimated, and the rest are missing
(Figure [I).

This data gap poses a major challenge. Direct nutrient
measurement is costly and slow, requiring lab equipment and
protocols. As a result, many foods lack full nutrient profiles,
especially rare foods or nutrients that are harder to measure.
These gaps limit how useful these databases can be for work
that needs complete nutrition data.

Existing methods to predict missing values often use re-
gression or clustering [2]. These rely on patterns in the
structured data. While sometimes helpful, they struggle to
capture deeper relationships—Ilike those found in literature,
recipes, or cultural food knowledge.

Our method addresses this by enriching a food-nutrient
knowledge graph with knowledge from Large Language Mod-
els (LLMs). LLMs encode broad information, including nutri-
tional science and food-related knowledge. By using LLMs
and a graph-based imputation approach, we aim to improve
predictions of missing nutrient values.

II. CONTRIBUTIONS
Our work makes the following contributions:

o We introduce a new method for enriching food-nutrient
knowledge graphs using LLM-derived information.

o We build a graph (Figure [2) that combines USDA data,
GPT-40 nutrient groupings, and OpenAl embeddings for
food and nutrient names. We also use clustering to form
new food groups.

e We show that Graph Neural Networks can use this
enriched graph to predict missing nutrient values more
accurately.

« We run an ablation study to measure how each part of
our approach contributes to prediction performance.

III. BACKGROUND
A. Graph Neural Networks

Graph Neural Networks (GNNs) are a class of deep learning
models designed to process graph-structured data and are
effective for modeling relational information data. Common
architectures include Graph Convolutional Networks [3] that
aggregate information from neighboring nodes, Graph Atten-
tion Networks [4] that introduce attention mechanisms during
aggregation, and GraphSAGE [5]], which samples neighbor-
hoods for inductive learning on large graphs. GNNs have
been used in chemistry [6], biology [7], and recommendation
systems [8]].

B. Food Nutrition Databases

Nutrition databases developed by governments and re-
searchers aim to track the nutrient content of foods [9]. The
USDA database is one of the most detailed, with data on
about 8,000 foods and 150 nutrients [[1]]. Other efforts include
the UK’s McCance and Widdowson’s database [[10] and the
EuroFIR project [11]]. Still, these databases all face the same
challenge: missing data, due to the high cost of full lab testing
[12].
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C. Graphs for Nutrient Prediction

Mozina et al. [I3] built a knowledge graph where foods
and nutrients are nodes and relationships are edges. Using
the ComplEx model [14], they showed that graphs can reveal
food similarities that simpler models miss. Their method
turned nutrient prediction into a classification task by grouping
nutrient values into bins (e.g., “between x and y”’). Their best
model achieved an MRR of 0.81 and Hits@10 of 0.94.

Our approach differs in key ways. We treat nutrient predic-
tion as a regression task instead of classification. Rather than
predicting a category, we predict exact values. This matters
because:

1) Regression keeps fine-grained details of nutrient values.

2) It allows more precise predictions across wide value
ranges.

3) It better handles the skewed and multi-modal data com-
mon in food composition.

Mozina et al. included food groups in their graph. We go
further, adding LLM-derived groupings for both foods and
nutrients. Also, their study used 351 foods and 25 nutrients,
while ours covers 7,800 foods and 150 nutrients.

IV. METHOD

A. Dataset

We use the USDA Food Nutrition Database, which includes
~7,800 foods and 150 nutrients [I]]. Its schema (Figure [)
includes tables for foods, nutrients, food groups, and nutrient
values.

As shown in Figure [3] measurements of nutrients:

o Span five orders of magnitude

« Have distributions that are tail heavy
o Have distributions are highly skewed

Because of these traits adaptive scaling is required before
using them for machine learning.
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Fig. 1. Our analysis of USDA-tracked foods showing which nutrient values
are measured (green), estimated (yellow), or missing (red). About 31% are
measured, 45% are missing, and 24% are estimated. The clustered heatmap
sorts similar foods (rows) and nutrients (columns) together to show missing
data patterns.
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Fig. 2. Overview of our LLM-enriched knowledge graph for nutrient

prediction. It combines USDA food composition data, OpenAl embeddings,
and GPT-40 nutrient groups, creating a graph with over 645,000 edges.

B. Adaptive Scaling

To handle wide, skewed, and multi-modal nutrient distribu-
tions, we apply adaptive scaling. We first analyze each nutri-
ent’s distribution and then choose one of the transformation
paths shown in Figure [7] This helps represent values in a
way that suits neural network training, while keeping relative
differences intact.

C. Graph Enrichment

We enrich the graph using four steps (Figure [5):

1. Vector Embedding: We use OpenAl’s “text-embedding-
3-small” model to create vector embeddings of USDA
food, nutrient, and group names. These serve as node features,
capturing semantic meaning.

2. Nutrient Groups: Since the USDA does not define
nutrient groups, we asked GPT-40 to create them and assign
USDA nutrients to these groups. We first prompted the model
to generate approximately 80 distinct nutrient groups, and then
asked the model to categorize each of the 150 nutrients into
these nutrient groups. For example, GPT-40 grouped calcium,
iron, and zinc under ‘Minerals’. This added ~80 new nutrient
groups.

3. Embedding Clusters: t-SNE plots (Figure [9) revealed
clear subgroups within the USDA-provided food groups. We
used K-means clustering with angular distance to define more
granular groupings for both food and nutrient embeddings.
Silhouette scores determined optimal cluster counts.

4. New Groups: We added the previously mentioned
embedding clusters as food/nutrient group nodes, with edges
connecting each food or nutrient to its respective group. This
integration uses knowledge that large language models (LLMs)
have learned from their extensive text training corpora. While
embeddings are trained to predict words, and LLMs may
generate plausible but false answers, we were curious if their
general knowledge could still improve prediction.
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Fig. 3. Strip plots showing Iron, Protein, and Phosphorus levels in 7,800 foods, grouped by food type. USDA measures nutrients per 100g of edible food.

The values span five orders of magnitude, are skewed, and often multi-modal.
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Fig. 4. USDA  schema: The
food_nutrient_measurements table
(nutrient_id) is in a food (food_id).

in the

column
indicates how much of a nutrient

nutrient_value

D. Graph Composition

Our graph (Figure [6) includes: Food nodes: ~7,800 foods
tracked by USDA Nutrient nodes: ~150 nutrients tracked by
USDA. Food group nodes: ~150 total, ~25 from USDA,
the rest from clustering. Nutrient group nodes: ~150 total,
~70 from GPT-4o, the rest from clustering. Food-nutrient
edges show how much of a nutrient a food contains per 100g.
Food-food group edges link foods to their groups. Nutrient-
nutrient group edges link nutrients to their groups.

USDA does not supply nutrient groups and assigns foods to
a single food group. We added nutrient groups (from GPT4-0),
and unlike USDA’s database schema, our graph allows foods
and nutrients to be members of multiple groups.

E. GNN Architecture

Our best-performing GNN uses a 4-layer design with hidden
dimension h = 500 and dropout rate p = 0.1. The model com-
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Fig. 5. To enrich the knowledge graph: (1) We added OpenAl embeddings
as node features. (2) GPT-4o0 suggested nutrient groupings. (3) We clustered
embedding vectors. (4) These clusters became additional food and nutrient
groups.

bines food and nutrient embeddings with bidirectional message
passing across six relation types, including food-to-food group
and food-to-nutrient edges. Node features are first transformed
using layer normalization, followed by GraphSAGE convolu-
tional layers with residual connections. Figure [§] shows a two-
layer version of this architecture, which performed worse than
the four-layer version but shares the same structure.

We use HuberLoss (6 = 1.0) to reduce the effect of outliers
in nutrient values, and optimize with AdamW (n = 1074,
weight decay=10"%). The learning rate decreases on plateau
(factor=0.5, patience=20). Training runs for up to 3000 epochs
with early stopping (patience=200), based on regularization
loss. This setup supports strong nutrient prediction across
diverse food types.

We also tested a GAT-based heterogeneous GNN with multi-
head attention (heads=4). Our best performing version had
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3 layers and used attention-based message passing over the
same six relation types. While it applied attention weights
to highlight key node relationships, it consistently underper-
formed compared to our GraphSAGE model. This is likely
due to the fact that the GAT architecture does not support
edge attributes. The GAT used the same layer normalization
and residual connections, but struggled to model the complex
structure of the nutrition graph.

We further explored a Transformer-based heterogeneous
GNN using TransformerConv layers over the same six relation
types. Although transformer layers can model long-range
dependencies, the best Transformer-based model we found still
performed poorly on our task.

E. Prediction Evaluation

We split our data 80/20 for training and validation and report
performance only from validation. Metrics used: Loss: Mean
Squared Error. R2%: Coefficient of determination. Accuracy
+30%: Fraction of predictions within £30% of the true value.
This range reflects natural variation in food composition
caused by factors like soil, climate, and genetics. Nutrient
values often vary by 20-30% even in lab settings, so this
margin is a practical benchmark. No single threshold fits all
nutrients or foods.

For our evaluation we did not rely on USDA’s nutrient
estimates (yellow in figure [I) but only considered actual
nutrient measurements (green in figure [I).

V. RESULTS

The common imputation method, which assigns missing
values based on the median of each food group, achieves
an accuracy (+30%) of 0.3029 on our dataset. By contrast,
the first version of our GNN model (Section [[V-E) with all
enrichments included reaches an accuracy (£30%) of 0.6654.
When graph enrichment is removed, accuracy drops to 0.6080.
This 6-point drop shows that predictions improve when using
an LLM-enriched knowledge graph.

food
s food_group
Bm nutrient
=W nutrient_group

= food - food_group
= food - nutrient
R nutrient - nutrient_group

Fig. 6. Structure of our knowledge graph. Nodes: foods (yellow), nutrients
(blue), food groups (orange), and nutrient groups (purple). Graph has 8,170
nodes and 645,209 edges.
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suitable transformation is applied.
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In our first ablation study (Table , we found that disabling
nutrient embedding vectors actually improved performance to
0.6712. This suggests that including these embeddings was
hurting accuracy.

We removed nutrient groups and repeated the ablation study
(Table [[T). This led to our highest accuracy: 0.6755.

These nutrient groups—and their assignments—were gen-
erated entirely by GPT-40. While the output initially appeared
reasonable, our results suggest that GPT-4o0 did not produce
nutrient groupings that improved prediction accuracy.

VI. DISCUSSION

While our results show that GNNs can benefit from LLM-
enhanced food nutrient graphs, several areas remain for future
work:

o We tuned hyperparameters using a single RTX4090 GPU
over two days. Further tuning may lead to better perfor-
mance.

Fig. 8.
through initial transformations, then heterogeneous graph convolutions. Our
best performing models use four GNN layers.This diagram shows only two
GNN layers for clarity.

GNN architecture for nutrient prediction. Various node types go
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TABLE I
SINGLE FEATURE ABLATION STUDY

Model Configuration MSE (Loss) R? Accuracy (+30%)
Imputation with Food Group Means - - 0.1918
Imputation with Food Group Medians - - 0.3029
All Enrichment Enabled 0.0501 0.8754 0.6654
All Enrichment Disabled 0.0796 0.7995 0.6080
Food Groups (FGs) Disabled 0.0507 0.8736 0.6669
Nutrient Groups (NGs) Disabled 0.0502 0.8748 0.6641
Food Embedding Vectors (FEV) Disabled 0.0705 0.8228 0.6293
Nutrient Embedding Vectors (NEV) Disabled 0.0519 0.8702 0.6569
Food Group Embedding Vectors (FGEV) Disabled 0.0496 0.8761 0.6665
Nutrient Group Embedding Vectors (NGEV) Disabled 0.0481 0.8811 0.6718

TABLE 11
DUAL FEATURE ABLATION: NUTRIENT GROUP EMBEDDING VECTORS (NGEV) ALWAYS DISABLED

Model Configuration

MSE (Loss) R2 Accuracy (£30%)

Imputation with Food Group Means - - 0.1918
Imputation with Food Group Medians - - 0.3029
NGEV Disabled 0.0509 0.8733 0.6629
NGEV and FGs Disabled 0.0491 0.8783 0.6699
NGEV and NGs Disabled 0.0484 0.8796 0.6755
NGEV and FEV Disabled 0.0738 0.8148 0.6143
NGEYV and NEV Disabled 0.0541 0.8656 0.6476
NGEV and FGEV Disabled 0.0491 0.8780 0.6667

Dairy and Egg Products

Spices and Herbs

Baby Foods

Fats and Oils
3 Poultry Products
Soups, Sauces, and Gravies
Sausages and Luncheon Meats
Breakfast Cereals
Snacks
Fruits and Fruit Juices
Pork Products
Vegetables and Vegetable Products
Nut and Seed Products

Beef Products

Beverages

Finfish and Shellfish Products
Legumes and Legume Products
Lamb, Veal, and Game Products
Baked Products

Sweets

Cereal Grains and Pasta

Fast Foods

Meals, Entrees, and Side Dishes
American Indian/Alaska Native Foods
Restaurant Foods

Fig. 9.
separations show that the embeddings capture meaningful groupings.

t-SNE plot of food embedding vectors, colored by cluster. Clear

e« We did not explicitly model food processing methods
(e.g., raw vs. cooked) or regional variations. Some of
these are implicitly captured in USDA labels used for
embedding vector computation.

« Prediction accuracy varies across nutrients, but we did not
study which ones perform well or poorly. Future work
should include this analysis and consider a confidence
model to indicate prediction reliability.

VII. CONCLUSION

This paper presents a new approach to food nutrient pre-
diction using GNNs applied to an LLM-enriched knowledge
graph. By incorporating semantic knowledge from LLMs, we
build a graph that helps predict missing nutrient values.

Our best GNN achieves 0.6755 accuracy (£30%), far outper-
forming the food group median baseline of 0.3029 on the same
USDA dataset of 7,800 foods and 150 nutrients. While LLM-
derived features generally improve performance, ablation stud-
ies are essential to identify which ones help. For example, we
found that removing GPT-40-generated nutrient groups led to
better predictions. All other enrichments contributed to a 6-
point gain.

Our results show the potential of using LLMs to enhance
structured prediction, especially when data is incomplete. This
method could apply to other domains where domain-specific
knowledge from LLMs can improve predictions.

By improving estimates of missing nutrient values, our work
helps make food composition databases more complete and
useful. These databases are key to nutrition research, public
health, and food policy.
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