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Abstract—People who use retinal implants often struggle to
tell letters apart because of limits in electrode density, signal
processing, and how the brain interprets stimulation. Rather than
modify the implant, we explore choosing visual symbols that
stay distinguishable under prosthetic distortions and mapping
them to letters. The approach has four steps: (1) generate
many candidate symbols; (2) simulate retinal-implant distortions
at several levels; (3) estimate confusion probabilities with pre-
trained neural networks; and (4) select a letter—-symbol map-
ping that lowers expected errors using language-specific letter
transition probabilities. We target the common single-symbol
viewing regime and sketch a hybrid approach in which a few very
frequent words have dedicated symbols while the letter mapping
covers the rest. Across Arabic, Bulgarian, and English, symbols
drawn from diverse sources (DCT, Katakana, Braille) are easier
to tell apart than standard letters at higher distortion in our
simulations. While user studies are needed, the results suggest
that carefully chosen symbol sets may help reading with retinal
implants without changes to hardware.

Index Terms—Bionic Vision, Retinal Implants, Visual Prosthe-
sis, Symbol Recognition, Accessibility, Human-Computer Inter-
action, Simulated Vision, Assistive Reading, Biomedical Signal
Processing, Visual Rehabilitation

I. INTRODUCTION

People who use retinal implants often struggle to tell letters
apart because of limited electrode density, signal processing,
and how electrical stimulation is interpreted in the visual
system. Rather than change the hardware, we ask a simpler
question: can we choose a small set of visual symbols, and
map them to letters, so that the symbols stay distinguishable
under prosthetic distortions?

In fluent reading with healthy vision, readers benefit from
a broad perceptual span, parafoveal preview, and the word-
superiority effect [1]-[5]]. Current retinal prostheses, however,
typically provide a narrow field of view, coarse sampling,
and temporal persistence, which together push users toward
sequential, one-symbol-at-a-time viewing [6]. In this single-
symbol regime, it is natural to focus on symbols that are easy
to tell apart even when distorted.

We explore this idea with SYMBOLSIGHT (Fig. [T)), a four-
step approach: (1) generate many candidate symbols; (2) sim-
ulate retinal-implant distortions at several levels; (3) estimate
symbol confusions with a pre-trained neural network; and (4)
choose a letter—symbol mapping that lowers expected errors
using language-specific letter transition probabilities. We also
propose a pragmatic hybrid: a few very frequent words receive
dedicated symbols, while the letter mapping covers everything
else. This keeps the system simple while allowing common
words to be read more quickly.
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Fig. 1. Our approach has four steps: generate symbols, simulate implant
distortions, estimate confusion with a pre-trained neural network, and choose
a letter-symbol mapping using letter transition probabilities

In simulations with Arabic, Bulgarian, and English, symbol
sets drawn from diverse sources (e.g., DCT, Katakana, Braille)
remained more distinct than standard letters as distortion
increased. These results are preliminary and depend on models
and assumptions; user studies are needed to test whether this
approach improves real-world reading with retinal implants.

A. Related Work

Research has explored how visual symbols stay clear in
situations with poor viewing conditions. For example, studies
on traffic signs have looked at how easy they are to read in
different weather, highlighting the need for designs that stay
clear amid visual noise and poor visibility [7]-[9]. For example



Clearview typeface was developed specifically to make road
signs more readable in low light and bad weather [10], [[11].

Similarly, research on airplane cockpits has taught us about
symbol recognition in challenging conditions. Cockpit display
symbols designed for high-vibration environments must stay
readable despite effects like retina image slip and motion blur
[12]. Research by Wickens et al. [[13] created guidelines for
display features that stay distinct even when the human visual
system is affected by environmental stress — problems similar
to those faced by retina implant users.

These studies help us understand how to design visual
symbols that work well despite various distortions. Research in
bionic vision has mainly focused on restoring natural vision
of symbols by either working with these known distortions
[14]-[16] or finding ways to avoid them by improving how
the stimulus is encoded [[17]-[19].

What’s new about our approach is that instead of trying
to adapt or work around the distortions in retina implants,
we focus on using the existing implant interface as it is to
maximize information transfer. Rather than trying to recreate
natural vision, our approach accepts the limits of current
retina implant technology and finds sets of symbols (for
the letter patterns of a given language) that remain clearly
distinguishable despite these limits.

B. Organization

The rest of paper is organized as follows. We first show
how different symbol sets are affected by retina implant
distortions. We then fine tune neural networks to recognize
symbol sets affected by various levels of retina implant distor-
tion to measure the resulting confusion matrices. These serve
as a stand-in for how retina implant distortions are likely
to cause symbol confusion for users. With these measured
confusion matrices, we then demonstrate an algorithm that
assigns letters to symbols in a way that minimizes confusion
based on letter transition patterns in a given language. The
algorithm considers which letter sequences appear most often
in a language and assigns them the symbols least likely to
be confused by a simulated visual system. This assignment is
done for all letters and symbols at once to minimize confusion
for an entire language. We conclude by testing our algorithm
on three languages: Arabic, Bulgarian and English.

II. METHODOLOGY

When simulating prosthetic vision, we show visual scenes
with white on a black background. This increases contrast
and makes things easier to see, which is important because
current prosthetic vision systems have limited brightness range
and resolution. Due to the limits of current retina implants,
symbols are shown one at a time, and different implant users
see various shapes ranging from small spots to long streaks
rather than uniform patterns [6].

This variation happens for several reasons: how much the
retina has degenerated affects which cells survive, the distance
between electrodes and the retina varies, and passing nerve
fibers can be activated. The parameters p and A in their axon
map model represent key aspects of how electrical current

spreads: p controls how the current spreads perpendicular to
nerve fibers (affecting how wide the perceived shape is), while
A determines the spread along nerve pathways (affecting how
elongated the shape appears).

A. Symbol Distortion

To make our simulations show a range of possible visual
experiences, we used pulse2percept [20] for three levels of
distortion (shown top to bottom on the left side of Figure [2)
based on Hans et al. methodology [21]]:

« Low Distortion: no axonal stimulation (p = 100um, \ =
Opm),

e Medium Distortion: medium sized phosphenes with
intermediate axonal stimulation (p = 300um,\ =
1000pm),

« High Distortion: large phosphenes with strong axonal
stimulation (p = 500um, A = 5000um,).

Our simulations use a custom 16x16 electrode grid (with
256 total electrodes) as a middle ground between older retina
implants that still have users like Argus II [22] and newer
implants that are available or being developed like PRIMA
[23]].

The right side of Figure [2| shows what happens to the
symbols on the left when they are shown rapidly one after
another and the leftover image of the previous symbol causes
more distortion. This happens because a faded afterimage of
the previously viewed symbol remains partly visible. This
distortion can greatly affect symbol recognition by creating
overlapping visual effects.

B. Symbol Recognition

To measure how these overlapping visual effects impact the
ability to recognize symbols distorted by retina implants, we
used a neural network (NN) already trained for vision as our
simulated vision system.

After testing several pre-trained NNs, we chose Mo-
bileNetV3 [24] because it was computationally efficient and
shares features with biological vision system

Examining how distortions affected the symbol sets in
Figure |2| we selected three for recognition testing:

o Katakana Symbols: These have a simple, attractive
appearance and stay recognizable even when blurred.

o Braille Symbols: These patterns of dots are used by blind
people for reading with their fingers.

o DCT Symbols: These are used by image compression
algorithms because they can represent key visual features
efficiently [27].

To perform recognition testing we modified MobileNetV3
for our needs by replacing its ImageNet classification top lay-
ers with layers suitable for our symbol set and only allowing
the weights in its top four layers to be changed during our

'Neuroscience studies show similarities between neural network structures
and how biological vision works; for example, certain types of convolutional
filters naturally develop center-surround patterns similar to mammalian retina
structures [25]], and features like shallow paths and skip connections mimic
biological neural pathways [26].
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Fig. 2. Left side: Seven symbol sets (Latin, DCT, Arabic, Japanese Katakana, Cyrillic, Braille, Korean Hangul) subjected to low, medium and high levels of
pulse2percept distortion. Right side: Simulation of what happens when symbols are presented sequentially and the perceptual residue of the previous symbol
causes further distortion.



fine-tuning. The trained weights in the lower layers were kept
fixed to preserve the already learned general feature extraction
abilities.

All fine-tuning was limited to seven epochs because our
goal was not to train the best possible classifier but to measure
which symbols pose the most confusion during learning. We
used the Adam optimizer with a small learning rate (0.0001)
and gradient clipping (clip value = 0.5), and categorical
cross-entropy loss. To prepare symbol images for training,
we applied hundred-fold augmentation with ‘mixup’ image
augmentation as a way to simulate how images persist in
vision [28]].

For each of our distortion levels (Section |II-A)), we fine-
tuned a separate MobileNetV3 model keeping everything else
the same. For each model, we measured how likely one
symbol was to be confused with another. These confusion
measurements were then used to guide our algorithm to select
the best symbol set.

C. Symbol Selection

To choose which symbols are good to assign to letters, we
can use measured confusion probabilities to avoid symbols
that are easily confused. And we improve this further by
accounting for the letter-to-letter transition probabilities (for
given language). Assigning letters that frequently follow each
other to symbols least likely to be confused helps reduce
reading errors. This requires analyzing both symbol confusion
probabilities and letter transition probabilities for a given
language.

The optimization problem is: given a letter co-occurrence
matrix C' (L x L, where L is the number of letters) and a
symbol confusion matrix F' (S x .S, where S is the number of
symbols), find a mapping function 7 that assigns each letter ¢
to a symbol (i) to minimize the cost function:

L—-1L-1

Cost =Y > Cij X Friiyn(j)

i=0 j=0
J#i

This function measures confusion based on two factors:
how often letter pairs appear together (e.g., ’th” in English)
and how likely their assigned symbols are to be mistaken
for each other due to retina implant distortions. Multiplying
these probabilities for all letter pairs gives a total confusion
measure. Our goal is to assign letters to symbols to minimize
this confusion.

To solve this problem we developed an adaptive approach
that uses different strategies based on the input size:

o For small problems (L < 36, S < 100), we use the Hun-
garian Algorithm (Kuhn-Munkres algorithm) [29], which
guarantees the best possible solution. This approach cre-
ates a complete cost matrix for all possible letter-symbol
pairings and finds the best overall assignment, though it
works best for smaller problem sizes because of its time
complexity is O(L3).

o For medium-sized problems (L < 36,5 < 500), we use a
local search strategy. This starts by assigning the clearest

symbols to the most frequent letters, then gradually im-
proves the solution by swapping pairs of assignments that
reduce the overall confusion cost. This method is faster
but may get stuck in locally good solutions rather than
finding the best possible solution. The time complexity
is O(L? - I - S) because each iteration needs to evaluate
O(L?) potential swaps, cost calculation for each swap is
O(S) in the worst case, and with T iterations, the total is
O(L*-1-89).

o For larger problems, it is possible to use a hybrid ap-
proach. This first reduces the options by selecting a subset
of the most distinct symbols, applies local search to this
smaller problem, and further improves the solution using
simulated annealing to avoid getting stuck in locally good
solutions. The time complexity is O(L?-1-S+L-T-S) be-
cause symbol subset selection is O(S log .S), local search
on the reduced problem is O(L? - I - S) and simulated
annealing is O(L - T - S) where T = iterations_per_temp
* temperature steps.

III. RESULTS

We fine-tuned three different MobileNetV3 neural networks:
one for low distortion symbols, one for medium distortion
symbols, and one for high distortion symbols. Figure (3| shows
some of the symbols we used for training and the confusion
probabilities of each trained network. We only show a small
sample of the 75,000+ symbol images we used, since how a
symbol looks depends on its place in randomly created symbol
sequences.

The heatmaps on the left in Figure [3| show how often
symbols are confused with each other. The middle diagonal
line shows correct identification. Offset diagonal lines appear
because similar symbols (mirrored or flipped) have similar
features. The faint vertical patterns show which actual symbols
get misidentified as others. The box patterns show that DCT
symbols are confused with other DCT symbols, Katakana
with other Katakana symbols, and Braille with other Braille
symbols. This effect is strongest with low distortion and
weakest with high distortion when the key visual features
become harder to see. Symbols from different sets are less
likely to be confused with each other than symbols within the
same set, which suggests using symbols from multiple sets
together works better.

With one confusion matrix for each distortion level, we
tested our symbol selection algorithm on Arabic, English, and
Bulgarian languages. We chose these three languages because
they are very different from each other, and each has enough
text online (from Project Gutenberg + OSCAR [30]], [31]) for
us to measure letter transition probabilities. Figures [ [5] and
[6] show our measured letter transition probabilities visually.
In English, many letter combinations never or rarely happen
(shown as light or white areas in the heatmap of Figure [6).
These rules about which letters can follow others help English
readers understand unclear symbols based on context. Arabic
has fewer of these restrictions (fewer light areas in the heatmap
of Figure [), which likely makes it harder to guess unclear
symbols from context. Bulgarian falls somewhere in between,
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Fig. 3. Right: DCT, Katakana and Braille symbol sets (with some mirrored and flipped symbols added) selected for recognition testing. These symbol
grids appear from top to bottom at low, medium and high levels of distortion. Left: Heatmaps show confusion probabilities of a pre-trained neural network
fine-tuned to recognize the symbols to their right.




with some letter restrictions (some light areas in the heatmap
of Figure [3)) but not as many as English.

Static images don’t show what happens when symbols
appear quickly one after another (in the typical order of a
given language) and the leftover image of the previous symbol
causes more distortion. Despite this limitation, by comparing
the third row to the sixth row in Figures [7] [8] and [9] we can
see that with higher distortion, the new symbols chosen by our
algorithm are easier to tell apart for all tested languages. We
expect the biggest benefit for Arabic, which has letter symbols
that are easily distorted (rows two and three in Figure [7) and
few letter sequence rules that could help with unclear symbols.
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g. 4. Heatmap showing Arabic language letter transition probabilities.

IV. DISCUSSION

This work is an early exploration. Our results come from
simulations and a neural network stand-in for human percep-
tion; we did not run user studies. The models do not capture
the full variety of percepts seen with retinal implants, so any
claimed benefits should be treated as hypotheses to test, not
conclusions.

Symbol design. We sampled a wide but still limited set
of symbols. Future work should try a broader pool (e.g.,
flags, emoji, simple face icons) and also learn new symbols
directly with contrastive objectives that push symbols apart
under distortion. Mixing sources seemed to reduce confusions;
a more systematic search could make this effect clearer.

Distortion modeling. Our simulations covered three distor-
tion levels but left out important realities. Next steps include:

o Varying electrode-grid density to span current and emerg-

ing devices,

o Simulating dead electrodes and other “blind spots,”

« Extending temporal effects beyond two symbols to cap-

ture longer persistence,
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Fig. 5. Heatmap showing Bulgarian language letter transition probabilities.
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Fig. 6. Heatmap showing English language letter transition probabilities.

o Using pulse2percept’s temporal features on symbol-
sequence videos.

Recognition model. We fine-tuned MobileNetV3 for con-
venience, not because it best matches human vision. Architec-
tures that better align with known visual pathways could yield
more realistic confusion matrices and help us understand when
symbol differences actually matter to users [32].

Letters vs. words. Reading with prosthetic vision is often
serial due to narrow field of view, low sampling, and persis-
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Fig. 7. The first three rows show Arabic letter symbols at low, medium and high distortion. The bottom three rows show the matching output of our symbol
selection algorithm.
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Fig. 8. The first three rows show Bulgarian letter symbols at low, medium and high distortion. The bottom three rows show the matching output of our
symbol selection algorithm.
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Fig. 9. The first three rows show English letter symbols at low, medium and high distortion. The bottom three rows show the matching output of our symbol
selection algorithm.

tence [|6]. Our letter-level optimization targets this one-symbol-
at-a-time regime while keeping key terms like perceptual span,
parafoveal preview, and the word-superiority effect in mind
[1]-[5]. A practical extension is a hybrid set: give a small
number of very frequent words their own symbols and use the
letter mapping for everything else. Because word frequencies
are Zipf-like, a small word set could cover much of everyday
text without overwhelming learning.

Objective function. We optimized using letter bigrams.
A direct word-level objective (e.g., making whole words
harder to confuse) might better predict reading performance.
Comparing letter-based and word-based optimization under

matched distortion would show how much is gained by moving
to sequences.

Overall, we see this as a starting point. The next step is
careful user testing, richer distortion models, broader symbol
searches, and head-to-head comparisons of letter-only versus
hybrid symbol sets on speed, accuracy, and learning curves.

V. CONCLUSION

SYMBOLSIGHT takes a simple approach: instead of chang-
ing hardware, pick symbols that stay distinct when seen
through retinal implants. We follow four steps—generate sym-
bols, simulate implant distortions, estimate confusion with



a pre-trained neural network, and choose a letter—symbol
mapping using letter transition probabilities. In simulation,
mixing diverse symbols (e.g., DCT, Katakana, Braille) helped
Arabic, Bulgarian, and English stay more readable at higher
distortion than standard letters.

This is an early result. Our simulations do not capture the
full variety of percepts, and neural networks are only proxies
for people. We focused on the common single-symbol, serial
reading setting and did not run user studies. Next, we should
test with implant users, expand the distortion models, and
explore more symbol types. It may also help to try a small set
of whole-word symbols for frequent words alongside the letter
mapping and directly compare speed, accuracy, and learning.

Even with these limits, the findings suggest that carefully
chosen symbol sets could make reading with retinal implants
easier—without changing the hardware.
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